Announcements

- PPA2
 - Due on Friday Nov 18

Bézier basis

- Hermite curves are convenient because they can be made long easily
- Bézier curves are convenient because their controls are all points and they have nice properties
 - and they interpolate every 4th point, which is a little odd
- We derived Bézier from Hermite by defining tangents from control points
 - a similar construction leads to the interpolating Catmull-Rom spline

Interpolation property

- \(C(t^*) \) can be evaluated using interpolation
- \(C(t) = (1-t)^3 P_0 + 3 t (1-t)^2 P_1 + 3 t^2 (1-t) P_2 + t^3 P_3 \)

De Casteljau algorithm

- Adaptive subdivision!
Recursive algorithm: de Casteljau algorithm

```c
void DrawRecBezier (float eps) {
    if Linear (curve, eps)
        DrawLine (curve);
    else
        SubdivideCurve (curve, leftC, rightC);
        DrawRecBezier (leftC, eps);
        DrawRecBezier (rightC, eps);
}
```

Test for Linearity

![Diagram showing linearity test](image)

Cubic Bézier splines

- Very widely used type, especially in 2D
 - e.g. it is a primitive in PostScript/PDF
- Can represent C^1 and/or G^1 curves with corners
- Can easily add points at any position

- Disadvantage
 - Special points
 - Only C^1

B-splines

- We may want more continuity than C^1
 - We may not need an interpolating spline
- B-splines are a clean, flexible way of making long splines with arbitrary order of continuity

Cubic B-spline basis

![Diagram of cubic B-spline basis](image)

Deriving the B-Spline

- Approached from a different tack than Hermite-style constraints
 - Want a cubic spline; therefore 4 active control points
 - Want C^2 continuity
 - Turns out that is enough to determine everything
Efficient construction of any B-spline

- B-splines defined for all orders
 - order \(d \) : degree \(d - 1 \)
 - order \(d \) : \(d \) points contribute to value
- One definition: Cox-deBoor recurrence

\[
b_1 = \begin{cases} 1 & 0 \leq u < 1 \\ 0 & \text{otherwise} \end{cases}
b_d = \frac{t}{d-1} b_{d-1}(t) + \frac{d-t}{d-1} b_{d-1}(t-1)
\]

B-spline construction, alternate view

- Recurrence
 - ramp up/down
- Convolution
 - smoothing of basis fn
 - smoothing of curve

Cubic B-spline matrix

\[
p(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \cdot \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{bmatrix}
\]

Cubic B-spline curves

- Treat points uniformly
- \(C^2 \) continuity
- \(C(t) = [(1-t)^3 P_{i-3} + (3t^2 - 6t + 4)P_{i-2} + (-3t^3 + 3t^2 + 3t + 1)P_{i-1} + t^3 P_i]/6 \)
- Notice blending functions still add to 1

Cubic B-spline basis

- B-spline from each 4-point sequence matches previous, next sequence with \(C^2 \) continuity!
- Treats all points uniformly
Evaluating splines for display

- Need to generate a list of line segments to draw
 - generate efficiently
 - use as few as possible
 - guarantee approximation accuracy

- Approaches
 - recursive subdivision (adaptive)
 - uniform sampling (easy to implement)

Rendering the spline-curve

- Given B-spline points \(d_{i-1}, \ldots, d_{i+1} \)
- Compute Bézier points \(b_0, \ldots, b_{3L} \)
- Use De Casteljau algorithm to render

\[
\begin{align*}
\frac{1}{3} & \delta_i \delta_{i+1} \\
\frac{1}{2} & \delta_i \delta_{i+1} \\
\frac{1}{3} & \delta_i \delta_{i+1}
\end{align*}
\]

Equations and boundary conditions

- Equations
 - \(b_{3i} = \frac{(b_{3i-1} + b_{3i+1})}{2} \)
 - \(b_{3i+1} = \frac{d_i}{3} + \frac{2d_{i+1}}{3} \)
 - \(b_{3i+2} = \frac{2d_i}{3} + \frac{d_{i+1}}{3} \)

- Boundary conditions
 - \(b_0 = d_{-1}, b_1 = d_0, b_2 = \frac{(d_0 + d_1)}{2} \)
 - \(b_{3L} = d_{L+1}, b_{3L+1} = d_L, b_{3L+2} = \frac{(d_{L-1} + d_L)}{2} \)

Other types of B-splines

- Nonuniform B-splines
 - discontinuities not evenly spaced
 - allows control over continuity or interpolation at certain points
 - e.g. interpolate endpoints (commonly used case)

- Nonuniform Rational B-splines (NURBS)
 - ratios of nonuniform B-splines: \(x(t)/w(t), y(t)/w(t) \)
 - key properties:
 - invariance under perspective
 - ability to represent conic sections exactly

Surfaces

- Generalize by product of basis functions in 2 dimensions

Summary

- Splines
 - Smoothness, continuity (C0, C1, C2)
- Hermite
 - No convex hull property
 - 2 points and 2 tangents
- Bezier
 - Convex hull property
 - De Casteljau evaluation
 - Invariant to affine transformations
- B splines
 - Non-interpolation
 - C2