Hermite splines

- Less trivial example
- Form of curve: piecewise cubic
- Constraints: endpoints and tangents (derivatives)

Matrix form is much simpler

\[p(t) = \begin{bmatrix} t^3 & t^2 & t \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ v_0 \\ v_1 \end{bmatrix} \]

- coefficients = rows
- basis functions = columns

Matrix form of spline

\[p(t) = at^3 + bt^2 + ct + d \]

Hermite splines

- Hermite basis functions
Longer Hermite splines

• Can only do so much with one Hermite spline
• Can use these splines as segments of a longer curve
 – curve from \(t = 0 \) to \(t = 1 \) defined by first segment
 – curve from \(t = 1 \) to \(t = 2 \) defined by second segment
• To avoid discontinuity, match derivatives at junctions
 – this produces a \(C^1 \) curve

Continuity

• Smoothness can be described by degree of continuity
 – zero-order (\(G^0 \)): position matches from both sides
 – first-order (\(G^1 \)): tangent also matches from both sides
 – second-order (\(G^2 \)): curvature also matches from both sides
 – \(G^n \) vs. \(C^n \)

Continuity

\[p^{(n)}(t) = \frac{d^n p(t)}{dt^n} \]

• A curve is said to be \(C^n \) continuous if \(p(t) \) is continuous, and all derivatives of \(p(t) \) up to and including degree \(n \) have the same direction and magnitude:
 \[\lim_{x \to t_-} p^{(m)}(x) = \lim_{x \to t_+} p^{(m)}(x), \quad m = 0 \ldots n \]

• \(G^n \) continuity is like \(C^n \) but only requires the derivatives to have the same direction:
 \[\lim_{x \to t_-} p^{(n)}(x) = k \lim_{x \to t_+} p^{(n)}(x), \quad \text{for some } k > 0 \]

Control

• Local control
 – changing control point only affects a limited part of spline
 – without this, splines are very difficult to use

Control

• Convex hull property
 – convex hull = smallest convex region containing points
 – think of a rubber band around some pins
 – some splines stay inside convex hull of control points
 – simplifies clipping, culling, picking, etc.
Convex hull

- If basis functions are all positive, the spline has the convex hull property

 - we're requiring them to sum to 1

 - if any basis function is ever negative, no convex hull prop.
 - *proof: take the other three points at the same place*

Affine invariance

- Transforming the control points is the same as transforming the curve

 - true for all commonly used splines
 - extremely convenient in practice...

Affine invariance

- Basis functions associated with points should always sum to 1

Hermite to Bézier

- Mixture of points and vectors is awkward
- Specify tangents as differences of points

 \[p(t) = b_0 p_0 + b_1 p_1 + b_2 v_0 + b_3 v_1 \]

 \[p'(t) = b_0 (p_0 + u) + b_1 (p_1 + u) + b_2 v_0 + b_3 v_1 \]

 \[= b_0 p_0 + b_1 p_1 + b_2 v_0 + b_3 v_1 + (b_0 + b_1) u \]

 \[= p(t) + u \]

 - note derivative is defined as 3 times offset

Hermite to Bézier

- \[p(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix} \]

 - note that these are the Bernstein polynomials

 \[C(n,k) t^k (1-t)^{n-k} \]

 and that defines Bézier curves for any degree
Bézier basis

![Bézier basis diagram](image)

Chaining spline segments

- Hermite curves are convenient because they can be made long easily
- Bézier curves are convenient because their controls are all points and they have nice properties
 - and they interpolate every 4th point, which is a little odd
- We derived Bézier from Hermite by defining tangents from control points
 - a similar construction leads to the interpolating Catmull-Rom spline

Chaining Bézier splines

- No continuity built in
- Achieve C¹ using collinear control points

Rendering the curve

- Option 1: uniformly sample in t
- Problem
 - may oversample smooth regions: slow
 - may undersample highly curved regions: faceted rendering

Interpolation property

- \(C(t^0) \) can be evaluated using interpolation
- \(C(t) = (1-t)^3 P_0 + 3 t (1-t)^2 P_1 + 3 t^2 (1-t) P_2 + t^3 P_3 \)
De Casteljau algorithm

- Adaptive subdivision!

Recursive algorithm

```c
void DrawRecBezier (float eps) {
    if Linear (curve, eps)
        DrawLine (curve);
    else
        SubdivideCurve (curve, leftC, rightC);
        DrawRecBezier (leftC, eps);
        DrawRecBezier (rightC, eps);
}
```

Test for Linearity

\[d_0 < \varepsilon\]
\[d_1 < \varepsilon\]

Cubic Bézier splines

- Very widely used type, especially in 2D
 - e.g. it is a primitive in PostScript/PDF
- Can represent \(C^1\) and/or \(G^1\) curves with corners
- Can easily add points at any position

- Disadvantage
 - Special points
 - Only \(C^1\)