CS4620/5620: Lecture 21

Texture Mapping

Announcements

- Extra office hours

Projector Function: Arbitrary Surfaces

- Non-parametric surfaces: project to parametric surface

Projector Functions: User-Specified

- Distortion in direction perpendicular to projection
- Approach
 - Unwrap mesh
 - Set of planar projections
 - Minimize the distortion
 - Smaller textures for each of the projections
 - Pack it into a larger texture

Perspective-Correct Texturing

- In hardware rendering
 - Must be careful to interpolate texture coordinates correctly

Interpolating in projection

- Linear interp. in screen space ≠ linear interp. in world (eye) space
Perspective-Correct Texturing

- Derivation

![Diagram of perspective-correct texturing](http://upload.wikimedia.org/wikipedia/commons/5/57/Perspective_correct_texture_mapping.jpg)

- See section 11.3.1 "Perspective Correct Textures"
- Linearly interpolate (u,v)/depth not just (u,v)

Demo: "UVMapper"

http://www.uvmapper.com

Projector Function: Arbitrary Surfaces

How does it work?

Texture Pipeline
Corresponder Function

• Why?
 – Flexibility

• Examples:
 – Select a subset of the image for texturing
 – Decide what happens at boundaries

Correspond function example

• Mapping from S to D can be many-to-one
 – that is, every surface point gets only one color assigned
 – but it is OK (and in fact useful) for multiple surface points to be
 mapped to the same texture point
 • e.g. repeating tiles

Correspond function example

• In OpenGL: wrapping mode

 ![WRAP](image)

 \[(-1, -1), (2, 2) \]

 • Wrap: Repeats
 • Mirror
 – Repeats but mirrored every other time; continuity across edges
 • Clamp: Clamped to edge of texture
 • Border: Clamped to border color