CS4620/5620: Lecture 18

Meshes

Announcements

- Prelim next Monday
 - In class, closed book
 - Including material on Friday
- PPA 1 out
 - Class on Friday, start early!
- TA evaluations
 - Will receive email online, make sure to fill them out
- 5625, Spring 2012: MW 2:55-4:10

Back face culling

- For closed shapes you will never see the inside
 - therefore only draw surfaces that face the camera
 - implement by checking $\mathbf{n} \cdot \mathbf{v}$

The z buffer

- In many (most) applications maintaining a z sort is too expensive
 - changes all the time as the view changes
 - many data structures exist, but complex
- Solution: draw in any order, keep track of closest
 - allocate extra channel per pixel to keep track of closest depth so far
 - when drawing, compare object's depth to current closest depth and discard if greater

Precision in z buffer

- The precision is distributed between the near and far clipping planes
 - this is why these planes have to exist
 - also why you can't always just set them to very small and very large distances
- Generally use z' (not world z) in z buffer

Polygon Meshes

Ch12.1, "Triangle Meshes"
Aspects of meshes

- in many cases we care about the mesh being able to bound a region of space nicely
- in other cases we want triangle meshes to fulfill assumptions of algorithms that will operate on them (and may fail on malformed input)
- two completely separate issues:
 - topology: how the triangles are connected (ignoring the positions entirely)
 - geometry: where the triangles are in 3D space

Topology/geometry examples

- same geometry, different mesh topology:

- same mesh topology, different geometry:

Notation

- \(n_T = \text{#tris}; n_V = \text{#verts}; n_E = \text{#edges} \)
- Euler: \(n_V - n_E + n_T = 2 \) for a simple closed surface
 - and in general sums to small integer
Examples of simple convex polyhedra

<table>
<thead>
<tr>
<th>Name</th>
<th>Image</th>
<th>Vertices</th>
<th>Edges</th>
<th>Faces</th>
<th>Euler characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetrahedron</td>
<td></td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Hexahedron or cube</td>
<td></td>
<td>8</td>
<td>12</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Octahedron</td>
<td></td>
<td>6</td>
<td>12</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Dodecahedron</td>
<td></td>
<td>20</td>
<td>30</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Icosahedron</td>
<td></td>
<td>12</td>
<td>30</td>
<td>20</td>
<td>2</td>
</tr>
</tbody>
</table>

http://en.wikipedia.org/wiki/Euler_characteristic

Buckyball

- $V = 60$
- $E = 90$
- $F = 32$ (12 pentagons + 20 hexagons)
- $V - E + F = 60 - 90 + 32 = 2$

Euler's Formula

- $n_V = \#verts; \quad n_E = \#edges; \quad n_F = \#faces$
- Euler's Formula for a convex polyhedron:
 \[n_V - n_E + n_F = 2 \]
- Other meshes often sum to small integer
 - argument for implication that $n_V/n_E: n_F$ is about 1:3:2

Topological validity

- Strongest property, and most simple: be a manifold
 - this means that no points should be "special"
 - interior points are fine
 - edge points: each edge should have exactly 2 triangles
 - vertex points: each vertex should have one loop of triangles
- not too hard to weaken this to allow boundaries

Representation of triangle meshes

- Compactness
- Efficiency for rendering
 - enumerate all triangles as triples of 3D points
- Efficiency of queries
 - all vertices of a triangle
 - all triangles around a vertex
 - neighboring triangles of a triangle
 - (need depends on application)
 - finding triangle strips
 - computing subdivision surfaces
 - mesh editing
Representations for triangle meshes

- Separate triangles
- Indexed triangle set
 - shared vertices
- Triangle strips and triangle fans
 - compression schemes for transmission to hardware
- Triangle-neighbor data structure
 - supports adjacency queries
- Winged-edge data structure
 - supports general polygon meshes

Separate triangles

- array of triples of points
 - float[n_T][3][3]: about 72 bytes per vertex
 - 2 triangles per vertex (on average)
 - 3 vertices per triangle
 - 3 coordinates per vertex
 - 4 bytes per coordinate (float)
- various problems
 - wastes space (each vertex stored 6 times)
 - cracks due to roundoff
 - difficulty of finding neighbors at all

Indexed triangle set

- Store each vertex once
- Each triangle points to its three vertices

Triangle

 Vertex vertex[3];

Vertex

 float position[3]; // or other data

 // ... or ...

Mesh

 float verts[nV][3]; // vertex positions (or other data)
 int tInd[nT][3]; // vertex indices

Indexed triangle set

- array of vertex positions
 - float[n_V][3]: 12 bytes per vertex
 - (3 coordinates x 4 bytes) per vertex
- array of triples of indices (per triangle)
 - int[n_T][3]: about 24 bytes per vertex
 - 2 triangles per vertex (on average)
 - (3 indices x 4 bytes) per triangle
- total storage: 36 bytes per vertex (factor of 2 savings)
- represents topology and geometry separately
- finding neighbors is at least well defined
Representations for triangle meshes

- Separate triangles
- Indexed triangle set
 - shared vertices
- Triangle strips and triangle fans
 - compression schemes for transmission to hardware
- Triangle-neighbor data structure
 - supports adjacency queries
- Winged-edge data structure
 - supports general polygon meshes