Announcements

- HW 2 extension till next Monday
- Grading slots: sign up sheet
 - Need to sign up, else will not be graded
- HW 1 (make regrade requests online)
- Course split
 - 45% 2 prelims
 - 30% 3 programming assignments
 - 25% 4 HWs

Rasterization

- First job: enumerate the pixels covered by a primitive
 - simple, aliased definition: pixels whose centers fall inside
- Second job: interpolate values across the primitive
 - e.g. colors computed at vertices
 - e.g. normals at vertices
 - will see applications later on

Optimizing line drawing

- Only need to update \(d \) for integer steps in \(x \) and \(y \)
- Do that with addition
- Known as “DDA” (digital differential analyzer)

Midpoint line algorithm

\[
\begin{align*}
x &= \text{ceil}(x_0) \\
y &= y_0 + \text{round}(m \cdot x + b) \\
d &= m \cdot (x + 1) + b - y \\
\text{while } x < \text{floor}(x_1) & \text{ do }
\begin{align*}
\text{if } d > 0.5 & \text{ then } \\
y &= y + 1 \\
d &= d - m \\
x &= x + 1 \\
d &= d + m \\
\text{output}(x, y)
\end{align*}
\end{align*}
\]

Linear interpolation

- We often attach attributes to vertices
 - e.g. computed diffuse color of a hair being drawn using lines
 - want color to vary smoothly along a chain of line segments
- Basic definition of interpolation
 - \(\text{ID}: f(x) = (1 - \alpha) \cdot y_0 + \alpha \cdot y_1 \)
 - where \(\alpha = (x - x_0) / (x_1 - x_0) \)
- In the 2D case of a line segment, alpha is just the fraction of the distance from \((x_0, y_0)\) to \((x_1, y_1)\)
Linear interpolation

- Pixels are not exactly on the line
- Define 2D function by projection on line
 - this is linear in 2D
 - therefore can use DDA to interpolate

Alternate interpretation

- We are updating d and α as we step from pixel to pixel
 - d tells us how far from the line we are
 - α tells us how far along the line we are
- So d and α are coordinates in a coordinate system oriented to the line

Alternate interpretation

- View loop as visiting all pixels the line passes through
 - Interpolate d and α for each pixel
 - Only output frag. if pixel is in band
- This makes linear interpolation the primary operation

Pixel-walk line rasterization

$x = \text{ceil}(x_0)$
$y = \text{round}(m \cdot x + b)$
output x, y
$d = m \cdot x + b - y$
while $x < \text{floor}(x_1)$
 - if $d > 0.5$
 $y += 1; d -= 1;$
 - else
 $x += 1; d -= m;$
 - if $-0.5 < d \leq 0.5$
 output x, y

Rasterizing triangles

- The most common case in most applications
 - with good antialiasing can be the only case
 - some systems render a line as two skinny triangles
- Triangle represented by three vertices
- Simple way to think of algorithm follows the pixel-walk interpretation of line rasterization
 - walk from pixel to pixel over (at least) the polygon's area
 - evaluate linear functions as you go
 - use those functions to decide which pixels are inside

Rasterizing triangles

- Input:
 - three 2D points (the triangle's vertices in pixel space)
 - $(x_0, y_0); (x_1, y_1); (x_2, y_2)$
 - parameter values at each vertex
 - $q_{00}, \cdots, q_{0n}; q_{10}, \cdots, q_{1n}; q_{20}, \cdots, q_{2n}$
- Output: a list of fragments, each with
 - the integer pixel coordinates (x, y)
 - interpolated parameter values q_0, \ldots, q_n
Rasterizing triangles

• Summary
 1. Evaluation of linear functions on pixel grid
 2. Functions defined by parameter values at vertices
 3. Using extra parameters to determine fragment set

Incremental linear evaluation

• A linear (affine, really) function on the plane is:
 \[q(x, y) = c_x x + c_y y + c_k \]

• Linear functions are efficient to evaluate on a grid:
 \[q(x + 1, y) = c_x (x + 1) + c_y y + c_k = q(x, y) + c_x \]
 \[q(x, y + 1) = c_x x + c_y (y + 1) + c_k = q(x, y) + c_y \]

Incremental linear evaluation

\[
\text{linEval}(xl, xh, yl, yh, cx, cy, ck) \}
// setup
qRow = cx*xl + cy*yl + ck;

// traversal
for y = yl to yh {
 qPix = qRow;
 for x = xl to xh {
 output(x, y, qPix);
 qPix += cx;
 }
 qRow += cy;
}
\]

c_x = .005; c_y = .005; c_k = 0
(image size 100x100)

Rasterizing triangles

• Summary
 1. Evaluation of linear functions on pixel grid
 2. Functions defined by parameter values at vertices
 3. Using extra parameters to determine fragment set