Announcements

- HW 2 extension till next Monday

Pipeline overview

- Application
- Command stream
- Vertex processing
- Transformed geometry
- Rasterization
- Fragments
- Fragment processing
- Framebuffer image
- Display

you are here

Primitives

- Points
- Line segments
- Triangles
- And that’s all!
 - Curves? Approximate them with chains of connected line segments
 - Polygons? Break them up into triangles
 - Curved regions? Approximate them with triangles
- Trend has been toward minimal primitives
 - Simple, uniform, repetitive: good for parallelism
 - And of course, cyclical; now you can send curves, and the vertex shader will convert to primitives

Rasterization

- First job: enumerate the pixels covered by a primitive
 - Simple, aliased definition: pixels whose centers fall inside
- Second job: interpolate values across the primitive
 - E.g. colors computed at vertices
 - E.g. normals at vertices
 - Will see applications later on

Rasterizing lines

- Define line as a rectangle
- Specify by two endpoints
- Ideal image: black inside, white outside
Point sampling

- Approximate rectangle by drawing all pixels whose centers fall within the line
- Problem: sometimes turns on adjacent pixels

Bresenham lines (midpoint alg.)

- Point sampling unit width rectangle leads to uneven line width
- Define line width parallel to pixel grid
- That is, turn on the single nearest pixel in each column
- Note that 45° lines are now thinner

Algorithms for drawing lines

- line equation:
 \[y = b + mx \]
 \[d = mx + b - y \]
- Simple algorithm: evaluate line equation per column
- W.l.o.g., \(x_0 < x_1 \)
 \[0 \leq m \leq 1 \]
 for \(x = \text{ceil}(x_0) \) to floor(\(x_1 \))
 \[y = b + m \times x \]
 output(\(x, \text{round}(y) \))

Bresenham lines (midpoint alg.)

- round(\(y \))?
 - cutoff at midpt
 \[y = mx + b \]
 \[d = mx + b - y \]
- \(d(x+1,y+0.5) \)
 \[= m(x+1) + b - (y+0.5) \]
- \(d > 0 ? E : NE \)
 - what does \(d > 0 \) mean?
Optimizing line drawing

- Multiplying and rounding: slow
- At each pixel
 - only options are E and NE

Midpoint line algorithm

\[
\begin{align*}
x &= \text{ceil}(x_0) \\
y &= y_0 = \text{round}(m \cdot x + b) \\
d &= m \cdot (x + 1) + b - y \\
\text{while } x < \text{floor}(x_1) \\
& \quad \text{if } d > 0.5 \\
& \quad \quad y += 1 \\
& \quad \quad d -= 1 \\
& \quad \quad x += 1 \\
& \quad \quad d += m \\
& \quad \text{output}(x, y)
\end{align*}
\]

Linear interpolation

- We often attach attributes to vertices
 - e.g., computed diffuse color of a hair being drawn using lines
- Want color to vary smoothly along a chain of line segments
- Recall basic definition
 - 1D: \(f(x) = (1 - \alpha) y_0 + \alpha y_1 \)
 - where \(\alpha = \frac{x - x_0}{x_1 - x_0} \)
- In the 2D case of a line segment, alpha is just the fraction of the distance from \((x_0, y_0) \) to \((x_1, y_1) \)

Alternate interpretation

- We are updating \(d \) and \(\alpha \) as we step from pixel to pixel
 - \(d \) tells us how far from the line we are
 - \(\alpha \) tells us how far along the line we are
- So \(d \) and \(\alpha \) are coordinates in a coordinate system oriented to the line
Alternate interpretation

- View loop as visiting all pixels the line passes through
 - Interpolate \(d \) and \(\alpha \) for each pixel
 - Only output frag. if pixel is in band
- This makes linear interpolation the primary operation

Pixel-walk line rasterization

\[
x = \text{ceil}(x) \\
y = \text{round}(m \times x + b) \\
d = m \times x + b - y
\]
while \(x < \text{floor}(x) \)
- if \(d > 0.5 \), \(y += 1; d -= 1; \)
- else \(x += 1; d += m; \)
 - if \(-0.5 < d \leq 0.5\) output \((x, y)\)

Rasterizing triangles

- The most common case in most applications
 - with good antialiasing can be the only case
 - some systems render a line as two skinny triangles
- Triangle represented by three vertices
- Simple way to think of algorithm follows the pixel-walk interpretation of line rasterization
 - walk from pixel to pixel over (at least) the polygon’s area
 - evaluate linear functions as you go
 - use those functions to decide which pixels are inside

Incremental linear evaluation

- A linear (affine, really) function on the plane is:
 \[
 q(x, y) = c_x x + c_y y + c_k
 \]
- Linear functions are efficient to evaluate on a grid:
 \[
 q(x + 1, y) = c_x (x + 1) + c_y y + c_k = q(x, y) + c_x \\
 q(x, y + 1) = c_x x + c_y (y + 1) + c_k = q(x, y) + c_y
 \]

Incremental linear evaluation

\[
\text{linEval}(x_l, x_h, y_l, y_h, c_x, c_y, c_k) \{
 // setup
 qRow = c_x * x_l + c_y * y_l + c_k; \\
 // traversal
 for y = y_l to y_h {
 qPix = qRow;
 for x = x_l to x_h {
 output(x, y, qPix);
 qPix += c_x;
 }
 qRow -= c_y;
 }
\}
\]

\(c_x = .005; c_y = .005; c_k = 0 \)
(image size 100x100)