Ray generation vs. projection

- Viewing in ray tracing
 - start with image point
 - compute 3D point that projects to that point using ray
 - do this using geometry
- Viewing by projection
 - start with 3D point
 - compute image point that it projects to
 - do this using transforms
- Inverse processes

Classical projections

- Emphasis on cube-like objects
 - traditional in mechanical and architectural drawing

<table>
<thead>
<tr>
<th>Planar Geometric Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel</td>
</tr>
<tr>
<td>Perspective</td>
</tr>
<tr>
<td>Orthographic</td>
</tr>
<tr>
<td>Oblique</td>
</tr>
<tr>
<td>One-point</td>
</tr>
<tr>
<td>Two-point</td>
</tr>
<tr>
<td>Three-point</td>
</tr>
<tr>
<td>Multiview Orthographic</td>
</tr>
<tr>
<td>Axonometric</td>
</tr>
</tbody>
</table>

Parallel projection

- Viewing rays are parallel rather than diverging
 - like a perspective camera that's far away

Multiview orthographic

- projection plane parallel to a coordinate plane
- projection direction perpendicular to projection plane
Off-axis parallel

- **axonometric**: projection plane perpendicular to projection direction but not parallel to coordinate planes.
- **oblique**: projection plane parallel to a coordinate plane but not perpendicular to projection direction.

“Orthographic” projection

- In graphics usually we lump axonometric with orthographic
 - projection plane perpendicular to projection direction
 - image height determines size of objects in image

View volume: orthographic

- View direction no longer coincides with projection plane normal (one more parameter)
 - objects at different distances still same size
 - objects are shifted in the image depending on their depth

Oblique projection

- View direction no longer coincides with projection plane normal (one more parameter)
 - objects at different distances still same size
 - objects are shifted in the image depending on their depth

Perspective

- **one-point**: projection plane parallel to a coordinate plane (to two coordinate axes)
- **two-point**: projection plane parallel to one coordinate axis
- **three-point**: projection plane not parallel to a coordinate axis

Perspective projection (normal)

- Perspective is projection by lines through a point; “normal” = plane perpendicular to view direction
 - magnification determined by:
 - image height
 - object depth
 - image plane distance
 - \(f.o.v. \ alpha = 2 \ atan(hi/(2d)) \)
 - \(y' = dy/z \)
 - “normal” case corresponds to common types of cameras
View volume: perspective

- The angle between the rays corresponding to opposite edges of a perspective image
 - easy to compute only for “normal” perspective
 - have to decide to measure vert., horiz., or diag.
- In cameras, determined by focal length
 - confusing because of many image sizes
 - for 35mm format (36mm by 24mm image)
 - 18mm = 67° v.f.o.v. — super-wide angle
 - 28mm = 46° v.f.o.v. — wide angle
 - 50mm = 27° v.f.o.v. — “normal”
 - 100mm = 14° v.f.o.v. — narrow angle (“telephoto”)

Field of view (or f.o.v.)

- **Field of view**
 - Determines “strength” of perspective effects

 - close viewpoint: wide angle, prominent foreshortening
 - far viewpoint: narrow angle, little foreshortening

Choice of field of view

- In photography, wide angle lenses are specialty tools
 - “hard to work with”
 - easy to create weird-looking perspective effects
- In graphics, you can type in whatever f.o.v. you want
 - and people often type in big numbers!

Perspective distortions

- Lengths
- Length Ratios

Shifted perspective projection

- Perspective but with projection plane not perpendicular to view direction
 - additional parameter: projection plane normal
 - corresponds to view camera in photography
Why shifted perspective?

- Control convergence of parallel lines
- Standard example: architecture
 - buildings are taller than you, so you look up
 - top of building is farther away, so it looks smaller
- Solution: make projection plane parallel to facade
 - top of building is the same distance from the projection plane

Specifying perspective projections

- Many ways to do this
 - common: from, at, up, v.o.f. (but not for shifted)
- One way (used in ray tracer):
 - viewpoint, view direction, up
 - establishes location and orientation of viewer
 - view direction is the direction of the center ray
 - image width, image height, projection distance
 - establishes size and location of image rectangle
 - image plane normal
 - can be different from view direction to get shifted perspective