Topics

- Graphics pipeline
- Rendering 3D scenes
 - ray tracing
 - GPU
- Images and image processing
 (featuring sampling and reconstruction)
- Geometric transformations
- Modeling in 2D and 3D
- Animation
- Color science

Graphics pipeline

- rasterization
- interpolation
- z-buffer
- vertex and fragment ops

Object-order vs. Image-order

- Object-order

  ```
  for each triangle t {
      find pixels covered by t
      c(x,y) = shaded result
  }
  ```

- Image-order

  ```
  for each pixel p=(x,y) {
      intersect ray through p with scene
      c(x,y) = shade (visible pixels)
  }
  ```

Workload

- CS 4620/5620
 - 4-5 Homeworks
 - 2-3 programming assignments
 - No penalty for 1 late homework, then 10% per day

- CS 4621/5621
 - 4-3 programming assignments

- 2 prelims, no finals
 - Schedule will be online shortly

Ray tracing

- Image-order

  ```
  for each pixel p=(x,y) {
      intersect ray through p with scene
      c(x,y) = shade (visible pixels)
  }
  ```

- Object-order

  ```
  for each triangle t {
      find pixels covered by t
      c(x,y) = shaded result
  }
  ```
Rasterizing lines

- Define line as a rectangle
- Specify by two endpoints
- Ideal image: black inside, white outside

Math review

- **Read:**
 - Chapter 2: Miscellaneous Math
 - Chapter 5: Linear Algebra
- Vectors and points
- Vector operations
 - addition
 - scalar product
- More products
 - dot product
 - cross product
- Bases and orthogonality

Math review

- Vectors and points
 - \(P = (x, y, z) \)
 - \(V = (a, b, c) \)
- Vector operations
 - addition
 - scalar product

Math review

- Notation for sets, functions, mappings
- Linear transformations
- Matrices
 - Matrix-vector multiplication
 - Matrix-matrix multiplication
- Geometry of curves in 2D
 - Implicit representation
 - Explicit representation
Implicit representations

- Equation to tell whether \(\mathbf{v} \) is on the curve
 \[\{ \mathbf{v} \mid f(\mathbf{v}) = 0 \} \]
- Example: 2D line (orthogonal to \(\mathbf{u} \), distance \(k \) from \(\mathbf{0} \))
 \[\{ \mathbf{v} \mid \mathbf{v} \cdot \mathbf{u} + k = 0 \} \]
- Example: circle (center \(\mathbf{p} \), radius \(r \))
 \[\{ \mathbf{v} \mid (\mathbf{v} - \mathbf{p}) \cdot (\mathbf{v} - \mathbf{p}) - r^2 = 0 \} \]

Explicit representations

- Also called parametric
- Equation to map domain into plane
 \[\{ f(t) \mid t \in D \} \]
- Example: line (containing \(\mathbf{p} \), parallel to \(\mathbf{u} \))
 \[\{ \mathbf{p} + t\mathbf{u} \mid t \in \mathbb{R} \} \]
- Example: circle (center \(\mathbf{p} \), radius \(r \))
 \[\{ \mathbf{p} + r[\cos t \sin t]^T \mid t \in [0, 2\pi] \} \]
- Like tracing out the path of a particle over time
- Variable \(t \) is the “parameter”

Transforming geometry

- Move a subset of the plane using a mapping from the plane to itself
 \[S \rightarrow \{ T(\mathbf{v}) \mid \mathbf{v} \in S \} \]

Transforming geometry

- Move a subset of the plane using a mapping from the plane to itself
 \[S \rightarrow \{ T(\mathbf{v}) \mid \mathbf{v} \in S \} \]
- Parametric representation:
 \[\{ f(t) \mid t \in D \} \rightarrow \{ T(f(t)) \mid t \in D \} \]
- Implicit representation:
 \[\{ \mathbf{v} \mid f(\mathbf{v}) = 0 \} \rightarrow \{ T(\mathbf{v}) \mid f(\mathbf{v}) = 0 \} \]
 \[= \{ \mathbf{v} \mid f(T^{-1}(\mathbf{v})) = 0 \} \]

Translation

- Simplest transformation: \(T(\mathbf{v}) = \mathbf{v} + \mathbf{u} \)
- Inverse: \(T^{-1}(\mathbf{v}) = \mathbf{v} - \mathbf{u} \)
- Example of transforming circle

Linear transformations

- One way to define a transformation is by matrix multiplication:
 \[T(\mathbf{v}) = M\mathbf{v} \]
- Such transformations are linear, which is to say:
 \[T(a\mathbf{u} + \mathbf{v}) = aT(\mathbf{u}) + T(\mathbf{v}) \]
 (and in fact all linear transformations can be written this way)
Geometry of 2D linear trans.

- 2x2 matrices have simple geometric interpretations
 - uniform scale
 - non-uniform scale
 - reflection
 - shear
 - rotation

Linear transformation gallery

- Uniform scale
 \[
 \begin{pmatrix}
 s & 0 \\
 0 & s
 \end{pmatrix}
 \begin{pmatrix}
 x \\
 y
 \end{pmatrix}
 =
 \begin{pmatrix}
 sx \\
 sy
 \end{pmatrix}
 \]
 \[
 \begin{pmatrix}
 1.5 & 0 \\
 0 & 1.5
 \end{pmatrix}
 \]

- Nonuniform scale
 \[
 \begin{pmatrix}
 s_x & 0 \\
 0 & s_y
 \end{pmatrix}
 \begin{pmatrix}
 x \\
 y
 \end{pmatrix}
 =
 \begin{pmatrix}
 s_x x \\
 s_y y
 \end{pmatrix}
 \]
 \[
 \begin{pmatrix}
 1.5 & 0 \\
 0 & 0.8
 \end{pmatrix}
 \]

- Reflection
 - can consider it a special case of nonuniform scale
 \[
 \begin{pmatrix}
 -1 & 0 \\
 0 & 1
 \end{pmatrix}
 \]

- Shear
 \[
 \begin{pmatrix}
 1 & a \\
 0 & 1
 \end{pmatrix}
 \begin{pmatrix}
 x \\
 y
 \end{pmatrix}
 =
 \begin{pmatrix}
 x + ay \\
 y
 \end{pmatrix}
 \]
 \[
 \begin{pmatrix}
 1 & 0.5 \\
 0 & 1
 \end{pmatrix}
 \]

- Rotation
 \[
 \begin{pmatrix}
 \cos \theta & -\sin \theta \\
 \sin \theta & \cos \theta
 \end{pmatrix}
 \begin{pmatrix}
 x \\
 y
 \end{pmatrix}
 =
 \begin{pmatrix}
 x \cos \theta - y \sin \theta \\
 x \sin \theta + y \cos \theta
 \end{pmatrix}
 \]
 \[
 \begin{pmatrix}
 0.866 & -0.5 \\
 0.5 & 0.866
 \end{pmatrix}
 \]