3D Transformations

Translation

\[
\begin{bmatrix}
x' \\
y' \\
z'
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 & t_x \\
0 & 1 & 0 & t_y \\
0 & 0 & 1 & t_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]

Scaling

\[
\begin{bmatrix}
x' \\
y' \\
z'
\end{bmatrix} =
\begin{bmatrix}
s_x & 0 & 0 & 0 \\
0 & s_y & 0 & 0 \\
0 & 0 & s_z & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]

Rotation about z axis

\[
\begin{bmatrix}
x' \\
y' \\
z'
\end{bmatrix} =
\begin{bmatrix}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
Transformations in OpenGL

- Stack-based manipulation of model-view transformation, M
 - `glMatrixMode(GL_MODELVIEW)` Specifies model-view matrix
 - `glLoadIdentity()` $M \leftarrow 4x4$ identity
 - `glTranslatef(float ux, float uy, float uz)` $M \leftarrow MT$
 - `glRotatef(float theta, float ux, float uy, float uz)` $M \leftarrow MR$
 - `glScalef(float sx, float sy, float sz)` $M \leftarrow MS$
 - `glLoadMatrixf(float[] A)` $M \leftarrow A$ (Note: column major)
 - `glMultMatrixf(float[] A)` $M \leftarrow MA$ (Note: column major)
- Manipulate matrix stack using:
 - `glPushMatrix()`
 - `glPopMatrix()`

```c
glMatrixMode(GL_MODELVIEW);  
glLoadIdentity();  
{ // Draw something:
    glPushMatrix();
    glTranslatef(...);
    glRotatef(15f, ...);
    { // set color and draw simplices
        glBegin(GL_TRIANGLES);
        glColor3f(...);
        glVertex3f(...);
        glVertex3f(...);
        glVertex3f(...);
        glEnd();
    }
    glPopMatrix(); // toss old transform
}  
{ // Draw something else:
    glPushMatrix();
    ...
    glPopMatrix(); // toss old transform
}
```
General Rotation Matrices

- A rotation in 2D is around a point
- A rotation in 3D is around an axis
 - so 3D rotation is w.r.t a line, not just a point
 - there are many more 3D rotations than 2D
 - a 3D space around a given point, not just 1D

Specifying rotations

- In 2D, a rotation just has an angle
 - if it's about a particular center, it's a point and angle
- In 3D, specifying a rotation is more complex
 - basic rotation about origin: unit vector (axis) and angle
 - convention: positive rotation is CCW when vector is pointing at you
 - about different center: point (center), unit vector, and angle
 - this is redundant: think of a second point on the same axis...
 - Alternative: Euler angles
 - stack up three coord axis rotations
 - degeneracies exist, e.g., gimbal lock

Coming up with the matrix

- Showed matrices for coordinate axis rotations
 - but what if we want rotation about some random axis?
- Compute by composing elementary transforms
 - transform rotation axis to align with x axis
 - apply rotation
 - inverse transform back into position
- Just as in 2D this can be interpreted as a similarity transform

Building general rotations

- Using elementary transforms you need three
 - translate axis to pass through origin
 - rotate about y to get into x-y plane
 - rotate about z to align with x axis
- Alternative: construct frame and change coordinates
 - choose p, u, v, w to be orthonormal frame with p and u matching the rotation axis
 - apply similarity transform $T = FR_x(\theta)F^{-1}$
Orthonormal frames in 3D

• Useful tools for constructing transformations
• Recall rigid motions
 – affine transforms with pure rotation
 – columns (and rows) form right-handed ONB
 • that is, an orthonormal basis

\[F = \begin{bmatrix} u & v & w & p \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

Building 3D frames

• Given a vector \(\mathbf{a} \) and a secondary vector \(\mathbf{b} \)
 – The \(\mathbf{u} \) axis should be parallel to \(\mathbf{a} \); the \(\mathbf{u} - \mathbf{v} \) plane should contain \(\mathbf{b} \)
 • \(\mathbf{u} = \mathbf{a} / ||\mathbf{a}|| \)
 • \(\mathbf{w} = \mathbf{a} \times \mathbf{b}; \mathbf{w} = \mathbf{w} / ||\mathbf{w}|| \)
 • \(\mathbf{v} = \mathbf{w} \times \mathbf{u} \)
• Given just a vector \(\mathbf{a} \)
 – The \(\mathbf{u} \) axis should be parallel to \(\mathbf{a} \); don’t care about orientation about that axis
 • Same process but choose arbitrary \(\mathbf{b} \) first
 • Good choice is not near \(\mathbf{a} \): e.g. set smallest entry to 1

Building general rotations

• Alternative: construct frame and change coordinates
 – choose \(\mathbf{p}, \mathbf{u}, \mathbf{v}, \mathbf{w} \) to be orthonormal frame with \(\mathbf{p} \) and \(\mathbf{u} \) matching the rotation axis
 – apply similarity transform \(T = FR(\theta)F^{-1} \)
 – interpretation: move to \(x \) axis, rotate, move back
 – interpretation: rewrite \(u \)-axis rotation in new coordinates
 – (each is equally valid)

• Or just derive the formula once, and reuse it (more later)

Building transforms from points

• Recall 2D affine transformation has 6 degrees of freedom (DOFs)
 – this is the number of “knobs” we have to set to define one
• Therefore 6 constraints suffice to define the transformation
 – handy kind of constraint: point \(\mathbf{p} \) maps to point \(\mathbf{q} \) (2 constraints at once)
 – three point constraints add up to constrain all 6 DOFs (i.e. can map any triangle to any other triangle)
• 3D affine transformation has 12 degrees of freedom
 – count them by looking at the matrix entries we’re allowed to change
• Therefore 12 constraints suffice to define the transformation
 – in 3D, this is 4 point constraints (i.e. can map any tetrahedron to any other tetrahedron)
Transforming normal vectors

- Transforming surface normals
 - differences of points (and therefore tangents) transform OK
 - normals do not

have: \(t \cdot n = t^T n = 0 \)
want: \(Mt \cdot Xn = t^T M^T Xn = 0 \)
so set \(X = (M^T)^{-1} \)
then: \(Mt \cdot Xn = t^T M^T (M^T)^{-1} n = t^T n = 0 \)

Derivation of General Rotation Matrix

- General 3x3 3D rotation matrix
- General 4x4 rotation about an arbitrary point