Identifiers

CS431 - Architecture of Web Information Systems
Carl Lagoze - Cornell University - Feb. 6 2006
Acknowledgments

• Stuart Weibel - OCLC
• Herbert Van de Sompel - LANL
Identifiers

- Provide a key or *handle* linking abstract concepts to physical or perceptible entities
- Provide us with a necessary figment of persistence
- They are perhaps the one *essential* and common form of *metadata*
- Why bother?
 - Finding things
 - Comparing things
 - Referring to things (*Citations*)
 - Asserting ownership over things
Identity Change Persistence

• Paradox: reality contains things that persist and change over time
 – Heraclitus and Plato: can you step into the same river twice?
 – Ship of Theseus: over the years, the Athenians replaced each plank in the original ship of Theseus as it decayed, thereby keeping it in good repair. Eventually, there was not a single plank left of the original ship. So, did the Athenians still have one and the same ship that used to belong to Theseus
Identity Change Persistence
I have lots of identifiers

• Carl Jay Lagoze, Dad, Hey you
• 123-456-7890 (SSN)
• 1234-5678-1234-1234 (Visa Card)
• FZBMLH (US Airways locator on January 18 flight to San Diego)
What do we want from identifiers?

• Global uniqueness
• Authority
• Reliability
• Appropriate functionality
 – Resolution
 – Other services
• Persistence
Identifier Issues

- Object granularity
- Identifier Context
 - Object atomicity
 - Part/whole relationships
- Location independence
- Human vs. machine generation and resolution
- Administration (centralized vs. decentralized)
- Intrinsic semantics
- Type specificity
Opaque versus Semantic Identifiers

- Should identifiers carry semantics?
 - People like semantic identifiers
 - Semantic Drift can be a problem
 - Semantics can compromise persistence
 - Semantics is culturally laden
Varieties of semantics

• Opaque
 - Nothing can be inferred, including sequence
 - Cannot be reverse-engineered (feature or bug?)
 - See ARCs, California Digital Library (John Kunze)
• Low-resolution date semantics
 - LCCN 99-087253
• Encoded semantics
 - ISBN 1-58080-046-7
 - Country codes… agency codes… checksums…
• Sequential Semantics
 - OCLC numbers
Two common pre-digital identifiers

- **ISBN (International Standard Book Number)**
 - Uniquely identifies every monograph (book)
 - One ISBN for each format
 - HP & SS hardback 0590353403
 - HP & SS softcover 059035342X
 - Number is semantically meaningful (components)
 - International administration (>150 countries)

- **ISSN (International Standard Serial Number)**
 - Uniquely identifies every serial (not issue or volume)
 - Semantically meaningless
 - International administration
The Identifier Layer Cake

- Identifiers come in many sizes, flavors, and colors... what questions do we ask?

The Web: http...TCP/IP...future infrastructure?
Social Layer

- The only guarantee of the usefulness and persistence of identifier systems is the commitment of the organizations which assign, manage, and resolve identifiers.

- **Who do you trust?**
 - Governments?
 - Cultural heritage institutions?
 - Commercial entities?
 - Non-profit consortia?

- **We trust different agencies for different purposes at different times**
Business layer

- Who pays the cost?
- How, and how much?
- Who decides (see governance model)?
Policy Layer

- Who has the ‘right’ to assign or distribute Identifiers?
- Who has the ‘right’ to resolve them or offer serves against them?
- What are appropriate assets for which identifiers can be assigned, and at what granularity?
- Can identifiers be recycled?
- Can ID-Asset bindings be changed?
- Is there supporting metadata, and if so, is it public, private, or indeterminate?
- Is there a governance model?
Application Layer

- What underlying dependencies are assumed?
 - http... tcp/ip...(bar code|RFID) scanners...
- What is the nature of the systems that support assignment, maintenance, resolution of identifiers?
- Are servers centralized? federated? peer to peer?
- How is uniqueness assured?
Functional Layer:
Operational characteristics of Identifiers

- Is it globally unique? (easy)
- What is the means for matching persistence with the need?
- Can a given identifier be reassigned?
- Is it resolvable? To what?
- How does it 'behave'? What applications recognize it and act on it appropriately?
- Is the 'name' portion of the identifier opaque, or can it carry 'semantics'?
- Do humans need to read and transcribe them?
- Do identifiers need to be matched to the characteristics of the assets they identify?
Technology layer: The Web

Some fundamental questions:
• Must our identifiers be URIs (URLs, really)?
• Must they be universally actionable?
• If so, what is the desired action?
• Is there ever a reason to use a URI other than an http-URI as an identifier?
Why isn’t DNS sufficient (parenthetical comment)

- Issue of semantic vs. non-semantic names
- Changing ownership
- Hierarchical legacy of DNS is sometimes inappropriate
Pure Identifiers versus pure Locators

• But *locators* and *identifiers* are not the same...or are they?
• In Web-space, they are close:
 • Not every *identifier* is a *locator*, but every *locator* is an *identifier*
 • Google-like search makes non-locator *identifiers* pretty good *locators* as well
URI: Universal Resource Identifier

- **Generic syntax** for identifiers of resources
- Defined by [RFC 2396](https://tools.ietf.org/html/rfc2396)
- Syntax: `<scheme>://<authority><path>?<query>`
 - **Scheme**
 - Defines semantics of remainder of URI
 - ftp, gopher, http, mailto, news, telnet
 - **Authority**
 - Authority governing namespace for remainder of URI
 - Typically Internet-based server
 - **Path**
 - Identification of data within scope of authority
 - **Query**
 - String of information to be interpreted by authority
URI Schemes (as of 2005 06 03)

http://www.iana.org/assignments/uri-schemes

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftp</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>http</td>
<td>Hypertext Transfer Protocol</td>
</tr>
<tr>
<td>gopher</td>
<td>The Gopher Protocol</td>
</tr>
<tr>
<td>mailto</td>
<td>Electronic mail address</td>
</tr>
<tr>
<td>news</td>
<td>USENET news</td>
</tr>
<tr>
<td>nntp</td>
<td>USENET news using NNTP access</td>
</tr>
<tr>
<td>telnet</td>
<td>Reference to interactive sessions</td>
</tr>
<tr>
<td>wais</td>
<td>Wide Area Information</td>
</tr>
<tr>
<td>prospero</td>
<td>Prospero Directory</td>
</tr>
<tr>
<td>z39.50s</td>
<td>Z39.50 retrieval</td>
</tr>
<tr>
<td>z39.50r</td>
<td>Z39.50 retrieval</td>
</tr>
<tr>
<td>cid</td>
<td>content identifier</td>
</tr>
<tr>
<td>mid</td>
<td>message identifier</td>
</tr>
<tr>
<td>vemmi</td>
<td>versatile multimedia service location</td>
</tr>
<tr>
<td>Interface</td>
<td></td>
</tr>
<tr>
<td>service</td>
<td></td>
</tr>
<tr>
<td>imap</td>
<td>internet message access protocol</td>
</tr>
<tr>
<td>nfs</td>
<td>network file system protocol</td>
</tr>
<tr>
<td>acap</td>
<td>application configuration access</td>
</tr>
<tr>
<td>protocol</td>
<td></td>
</tr>
<tr>
<td>rtsp</td>
<td>real time streaming protocol</td>
</tr>
<tr>
<td>tip</td>
<td>Transaction Internet Protocol</td>
</tr>
<tr>
<td>pop</td>
<td>Post Office Protocol v3</td>
</tr>
<tr>
<td>data</td>
<td></td>
</tr>
<tr>
<td>dav</td>
<td></td>
</tr>
<tr>
<td>opaque</td>
<td>opaque lock tokens</td>
</tr>
<tr>
<td>locktoken</td>
<td></td>
</tr>
<tr>
<td>sip</td>
<td>session initiation protocol</td>
</tr>
<tr>
<td>sips</td>
<td>secure session initiation protocol</td>
</tr>
<tr>
<td>tel</td>
<td>telephone</td>
</tr>
<tr>
<td>fax</td>
<td></td>
</tr>
<tr>
<td>modem</td>
<td>Lightweight Directory Access</td>
</tr>
<tr>
<td>ldap</td>
<td>Protocol</td>
</tr>
<tr>
<td>https</td>
<td>Secure</td>
</tr>
<tr>
<td>soap</td>
<td></td>
</tr>
<tr>
<td>soap.beep</td>
<td></td>
</tr>
<tr>
<td>soap.beeps</td>
<td></td>
</tr>
<tr>
<td>xmlrpc</td>
<td></td>
</tr>
<tr>
<td>xmlrpc.beep</td>
<td></td>
</tr>
<tr>
<td>xmlrpc.beeps</td>
<td></td>
</tr>
<tr>
<td>urn</td>
<td></td>
</tr>
<tr>
<td>go</td>
<td></td>
</tr>
<tr>
<td>h323</td>
<td></td>
</tr>
<tr>
<td>ipp</td>
<td></td>
</tr>
<tr>
<td>tftp</td>
<td></td>
</tr>
<tr>
<td>mupdate</td>
<td>Protocol</td>
</tr>
<tr>
<td>pres</td>
<td></td>
</tr>
<tr>
<td>im</td>
<td></td>
</tr>
<tr>
<td>mtap</td>
<td></td>
</tr>
<tr>
<td>iris</td>
<td></td>
</tr>
<tr>
<td>beep</td>
<td></td>
</tr>
<tr>
<td>dict</td>
<td></td>
</tr>
<tr>
<td>smtp</td>
<td>Protocol</td>
</tr>
<tr>
<td>crid</td>
<td>Identifier</td>
</tr>
<tr>
<td>tag</td>
<td></td>
</tr>
</tbody>
</table>

Reserved URI Scheme Names:
- afs names
- tn3270 sessions
- mailservers

Andrew File System global file
Interactive 3270 emulation
Access to data available from
Why is RFC 2396 so big?

• Character encodings
• Partial and relative URIs
URL: Universal Resource Locator

- String representation of the location for a resource that is available via the Internet
- Use URI syntax
- Scheme has function of defining the access (protocol) method. Used by client to determine the protocol to “speak”.
 - http://an.org/index.html - open socket to an.org on port 80 and issue a GET for index.html
 - ftp://an.org/index.html - open socket to an.org on port 21, open ftp session, issue ftp get for index.html....
URL Issues

- Persistence
- Location dependence
- Valid only at the item level
 - What about works, expressions, manifestations
- Multiple resolution
 - “get the one that is cheapest, most reliable, most recent, most appropriate for my hardware, etc.”
- Non-digital resources?
- Sub-parts
Arguments for http-based identifiers

- Application Ubiquity: every Web application recognizes them. Achieving similar ubiquity for other URI schemes is very difficult
- Actionable identifiers are good – immediacy is a virtue
- If the Web is displaced, everyone has the problem of coping; if you invent your own solution, and it is displaced, you are isolated
- Using Non-ubiquitous identifiers will make it harder to maintain persistence over time by complicating the technical layer, which will compromise the ability to sustain long-term institutional commitments
Arguments for NON http-URIs as identifiers

• Separation of IDENTITY and RESOLUTION is a small but important component of a complete naming architecture, and is poorly accommodated in current Web Architecture

• URLs make a promise: click-here-for-resolution
 – Sometimes you DON’T want resolution, or you want context-dependant action

• Not always clear what the action should be

• It is difficult to avoid branding in locators, and branding changes, threatening identifier persistance
URN - Universal Resource Name

- “globally unique, persistent names”
- Independence from location and location methods

<URN> ::= "urn:" <NID> ":" <NSS>

- **NID**: namespace identifier
- **NSS**: namespace-specific string
- **examples**:
 - urn:ISSN:1234-5678
 - urn:isbn:9044107642
 - urn:doi:10.1000/140
Handles: Names for Internet Resources

- Naming system for location-independent, persistent names
- One name, multiple resolutions
- http://www.handle.net

The resource named by a Handle can be:

- A library item
- A collection of library items
- A catalog record
- A computer
- An e-mail address
- A public key for encryption
- etc., etc., etc.
Syntax of Handles

\[<\text{naming_authority}>/ <\text{locally_unique_string}> \]

or

\[\text{hdl}: <\text{naming_authority}>/ <\text{locally_unique_string}> \]

Examples

10.1234/1995.02.12.16.42.21;9 (date-time stamp)
cornell.cs/cstr-94.45 (mnemonic name)
loc/a43v-8940cgr (random string)
Example of a Handle and its Data Used to Identify Two Locations

Handle: loc.ndlp.amrlp/123456

Data type

URL: http://www.loc.gov/.....

RAP: loc/repository-1r4589
Use of Handles in a Digital Library

User interface

Repository

Handle System

Search System
Replication for Performance and Reliability

Example: the Global Handle System

Los Angeles, CA

Washington, DC
Proxy Resolution

WWW browser

URL to Proxy

Proxy server

hdl.handle.net

Handle System

URL

HTTP server

Resource

WWW browser

URL

Handle System
DOI - Digital Object Identifier

• Technology and social infrastructure for naming
• Established by publishers for persistent naming of entities (articles, journals, conference proceedings)
• Cognizant of FRBR elements
• Underlying technology is handle system
 - “persistent” names
 • Persistence is fortified by social underpinnings
 • Rules for establishing registration agencies
 - Multiple resolution
 • Registration/mechanism has metadata associated with it
• doi:10.1000/186
Why haven’t URNs caught on beyond certain communities?

• Complexity of systems
• One size does not fit all - special purpose URN schemes have been successful, e.g., PubMed ID, Astrophysics BibCode
• No guarantee of persistence - longevity is an organizational not technical issue
• Requires well-regulated administrative systems
• Absence of “killer” applications - although reference linking is emerging
Making links context sensitive

- **Why?**
 - “Appropriate item” differs for each user
 - Licensing locality
 - Some users may want a choice (abstract, full text, etc.)
- **Conceptualize link as service rather than object targeted.**
- **OpenURL**
 - Transports metadata about the work to...
 - A localized service that interprets the metadata and provides contextualized choices to the user.
OpenURL linking

link source

reference

OpenURL

linking server

user-specific

link destination

context-sensitive

OpenURL linking

server

transportation of metadata & identifiers

context-sensitive

link destination

link

link

link

link

link

link

link

link

link

link
OpenURL 0.1 syntax

http://www.mysrv.org/menu?
 • id=doi:10.111/12345&
 • genre=article&
 • aulast=Weibel&aufirst=Stu&ISSN=35345353
 &year=2001&volume=14&issue=3&spage=44&
 • pid=2829393&
 • sid=OCLC:Inspec
Google Scholar and OpenURL

- “Find it at“
The "info" URI Scheme for Information Assets with Identifiers in Public Namespaces

- An effort to provide a missing part of the naming architecture of the Web
- Bridge legacy identifiers and the Web
- Separate resolution from identity
- Internet Draft by Herbert Van de Sompel, Tony Hammond, Eammon Neylon, and Stuart L. Weibel
 - http://info-uri.info
What does an “info” URI look like?

• info:ddc/22/eng//004.678

 – **Info**: specifies the “info” namespace, or scheme
 – Namespace Token (ddc/ in this case) is a registered namespace or brand within the scheme
 – Everything that follows is at the discretion of the namespace authority that manages a given registered namespace, (and conforms to URI encoding standards)
 – No implication of resolution, though clearly services (including resolution) can be expected to emerge if “info” achieves wide use.