World Wide Web - History, Architecture, Protocols
Architecture of Web Information Systems

CS/INFO 431
Carl Lagoze - Spring 2006
Creating Order from Chaos

• Information universe is inherently disordered

• Cognition is order-making, pattern finding
 - Hawkins - “On intelligence”
 - Classification
 - Data mining

• Information management involves, then, putting layers of order on this chaos
 - policies, practices, standards, laws, architectures
Standards in traditional information management

• Evolved in slow transition from elite culture to democratic culture

• Professional Culture controls adaptation
 - Shared culture through professional affiliation, ALA, IFLA
 - Shared culture through training, MLS

• Codes
 - Library Bill of Rights
 - Privacy agreements

• Intellectual Standards
 - Dewey Decimal System
 - Taxonomies - LCSH, MESH
 - Cataloging Rules - AACR2, Name Authorities

• Architectures
 - Machine Readable Cataloging
Standards in networked information management

• Roots in elite culture, revolutionary transition to democratic culture
• Complicated by profit/power potential
 - Political structures reflect this complication
• Based on code rather than human behavior
 - difficult transition from heuristic to algorithmic world – e.g., rights management
 - Larry Lessig “Code and Other Laws of Cyberspace”
• Opportunities to replace human effort with algorithmic and computational power
• “Good enough” principle
Architecture and Standards Layers

<table>
<thead>
<tr>
<th>Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Semantics – DTD, Schema, RDF, OWL</td>
</tr>
<tr>
<td>Web Protocols and Standards – XML, HTTP</td>
</tr>
<tr>
<td>Internet - TCP/IP, SMTP, email, etc.</td>
</tr>
<tr>
<td>Network Hardware</td>
</tr>
</tbody>
</table>

Upper layers operate within constraints and opportunities of lower layers
In the beginning....
In the beginning...
ARPANET

- DoD funded through leadership of Licklider
- Inspired by move from batch to timesharing
- Allowed remote login
Packet Switching

- Invented in early 1960’s by Baran, Davies, Kleinrock
- Digital, redundant, efficient, upgradeable (software)
- 1969 ARPANET first network implementation
Packet Switching

• Network messages broken up into packets
• Each pocket has a destination address
• Pass and forward model – router gets packet, examine, decides where to send next
• Message reassembled on other end
Layered Protocol Model

- **Process**: User applications
- **Transport**: Host-to-host layer: may establish virtual circuit for messages
- **Network**: Determines route to transmit packets
- **Data Link**: Transforms raw messages into one that appears free of transmission errors, transmits data cells and processes acknowledgement cells.
TCP/IP Protocol Suite

- **IP** - packet delivery
- **TCP** - virtual circuits, packet reassembly
- **ARP/RARP** - address resolution
Internet Issues – how to address them

- Demands of multimedia applications
- Virtual circuit reservations - bandwidth and quality of service guarantees
- Real time streaming protocols
- State saving

- Political Comment
 - Increase in functionality has implications
 - Democratization of the Net
 - Privacy
 - Vulnerability
THE FUTURE OF IDEAS

THE FATE OF THE COMMONS
IN A CONNECTED WORLD
Infrastructure and Standardization

• Complex legal, economic, social, and technical process
• Wasn’t invented in the information age
 – Railroad track gauge and tariffs
 – Telephone and telegraph
 – Banking
 – Power and Light
• Not for the faint-hearted
Internet Governance

- Internet Society (ISOC) - Evolution, social & political issues
 - http://www.isoc.org/
- Internet Architecture Board (IAB) - Oversees standards process
 - http://www.iab.org/
- Internet Engineering Task Force (IETF) - standards development
 - http://www.ietf.org/
- Internet Corporation for Assigned Names and Numbers (ICANN)
 - DNS administration
 - IP # assignment
 - Protocol #’s
 - port #’s
 - http://www.icann.org/
- World Wide Web Consortium (W3C) - web standards and evolution
 - http://w3c.org
Internet Documents

- RFC’s – “Requests for Comments” to IETF community for information, standardization
- STD’s – Official IETF Internet standards
 - http://www.rfc-editor.org/rfcxx00.html
- Internet Drafts – IETF working documents
- W3C Reports (recommendations, drafts, notes)
 - http://www.w3.org/TR/
Well-Known Protocols

- Telnet - external terminal interface, RFC 854 (1983)
- FTP - file transfer, RFC 959 (1985)
- SMTP - mail transport, RFC 821 (1982)
- HTTP - distributed, collaborative hypermedia systems, RFC 1945 (1.0 1996), RFC 2616 (1.1 1999)
Short History and Premises of the Web

• Information sharing in a fluid context
 - CERN 1989
 - Reality
• Relationships are not hierarchical
• Non-centralized management
• Structure can be modeled as a graph
 - Typed nodes (text, graphics, people, software modules)
 - Type relationships (depends on, refers to, made)
• Hypertext (after Ted Nelson)
 - Human-readable information linked together in an unconstrained way.
 - Extend to Hypermedia and network
• Clean division of document display and format (browsers and HTML) from access (HTTP)
Basic Web Technologies

- Document layout
 - HTML → XML
- Document formatting
 - CSS
- Document naming
 - URL’s
- Document typing
 - MIME
- Document access
 - HTTP
HTTP

• HTTP is...
 - Designed for document transfer
 - Generic
 • not tied to web browsers exclusively
 • can serve any data type
 - Stateless
 • no persistent client/server connection
 - Defined at ftp://ftp.isi.edu/in-notes/rfc2616.txt
HTTP Example

[-bash-2.05b4] telnet google.com 80
Trying 72.14.207.99...
Escape character is '^]'.
GET index.html HTTP/1.1
Host: lagoze.com

HTTP/1.1 200 OK
Cache-Control: private
Content-Type: text/html
Set-Cookie: PREF=ID=9c9f0e0565b57456:TM=118635078:LM=118635078:S=H-BswXLg53YkL
114; expires=Sun, 17-Jan-2038 19:14:07 GMT; path=/; domain=.google.com
Server: GWS/2.1
Transfer-Encoding: chunked
Date: Mon, 30 Jan 2006 15:31:18 GMT

bd8
<html><head><meta http-equiv="content-type" content="text/html; charset=ISO-8859-1"><title>Google<title><!--body,td,a,p,.h{font-family:arial,sans-serif;}
.h{font-size: 20px;}
.q{color:#0000cc;}
//-->
</style>
<script>
<!--
function sf(){document.f.q.focus();}
//-->
</script>
</head><body bgcolor=#ffffff text=#000000 link=#0000cc vlink=#551a8b alink=#ff00
00 onlload=sf() topmargin=3 marginheight=3><center><table border=0 cellspacing=0
cellpadding=0 width=100%><tr><td align="right" nowrap>Personalized Home</td><tr height=4><td></td><tr><td><table cellpadding=0 cellspacing=0 border=0><tr><td align="right" valign="bottom"></td>
HTTP Session

• An HTTP session consists of a client request followed by a server response
• Requests and responses are sent in plain text
HTTP Request Methods

• Methods include
 - GET: retrieve information identified by the URL
 - HEAD: same as get but don't get message body (content)
 - POST: accept the request content and send it to the URL
 - PUT: store the request content at the given URL
HTTP Request

• Start line
 - Consists of method, URL, version

 `GET index.html HTTP/1.1`
 - Valid methods include:
 - `GET`, `POST`, `HEAD`, `PUT`, `DELETE`

• Headers
 - `HTTP/1.1` requires a `Host: header`

 `Host: www.google.com`

• Body content
HTTP Response

• **Start line**
 - consists of HTTP version, status code, and description
 HTTP/1.1 200 OK
 HTTP/1.1 404 Not Found

• **Headers**
 Content-type: text/html

• **Content**
HTTP Response Codes

- Response coded by first digit
 - 1xx: informational, request received
 - 2xx: success, request accepted
 - 3xx: redirection
 - 4xx: client error
 - 5xx: server error

HTTP Content Body

• Header fields can affect content interpretation
 - required header field: Content-type
 - others: Content-Encoding, Content-Length, Expires, Last-Modified