Components of the Semantic Web

Problems with RDF/RDFs

Weaknesses in expressivity

- No localized domain and range constraints
 - Can’t say the range of hasChild is person in context of persons and elephants in context of elephants
- No existence/cardinality constraints
 - Can’t say that all instances of persons have a mother that is also a person
 - Can’t say that persons have exactly two biological parents
- No transitive, inverse or symmetric properties
 - Can’t say isPartOf is a transitive property
 - Can’t say isPartOf is inverse of hasPart
 - Can’t say touches is symmetric
What is an **Ontology**?

- A formal specification of conceptualization shared in a community
- Vocabulary for defining a set of things that exist in a world view
- Formalization allows communication across application systems and extension
- Parallel concepts in other areas:
 - **Domains**: database theory
 - **Types**: AI
 - **Classes**: OO systems
 - **Types/Sorts**: Logic

XML and RDF are ontologically neutral

- No standard vocabulary just primitives
 - Resource, Class, Property, Statement, etc.
- Compare to classic first order logic
 - Conjunction, disjunction, implication, existential, universal quantifier

Components of an Ontology

- Vocabulary (concepts)
- Structure (attributes of concepts and hierarchy)
- Relationships between concepts
- Logical characteristics of relationships
 - Domain and range restrictions
 - Properties of relations (symmetry, transitivity)
 - Cardinality of relations
 - etc.

Wordnet

- On-line lexical reference system, domain-independent
- >100,000 word meanings organized in a taxonomy with semantic relationships
 - Synonymy, meronymy, hyponymy, hypernymy
- Useful for text retrieval, etc.

CYC

- Effort in AI community to accommodate all of human knowledge!!!
- Formalizes concepts with logical axioms specifying constraints on objects and classes
- Associated reasoning tools
- Contents are proprietary but there is OpenCyc
 - http://www.opencyc.org/

So why re-invent ontologies for the Web

- Not re-invention
 - Same underlying formalisms (frames, slots, description logic)
- But new factors
 - **Massive scale**
 - Tractability
 - Knowledge expressiveness must be limited or reasoning must be incomplete
 - Lack of central control
 - Need for federation
 - Inconsistency, lies, re-interpretations, duplications
 - Open world vs. Close world assumptions
 - Contrast to most reasoning systems that assume anything absent from knowledge base is not true
 - Need to maintain monotonicity with tolerance for contradictions
 - New facts appear and modify constantly
 - Open world vs. Close world assumptions
 - Need to build on existing standards
 - URI, XML, RDF
Web Ontology Language (OWL)

- W3C Web Ontology Working Group (WebOnt)
- Follow on to DAML, OIL efforts
- W3C Recommendation
- Vocabulary extension of RDF

Species of OWL

- **OWL Lite**
 - Good for classification hierarchies with simple constraints (e.g., thesaurs)
 - Reasoning is computational simple and efficient
- **OWL DL**
 - Computationally complete and decidable (computation in finite time)
 - Correspondence to description logics (decidable fragment of first-order logic)
- **OWL Full**
 - Maximum expressiveness
 - No computational guarantees (probably never will be)

Each language is extension of simpler predecessor

Relationship between OWL and RDF(s)

- OWL Full is extension of RDF
- OWL Lite and DL extensions of restricted view of RDF
- Every OWL document is an RDF document
- Every RDF document is an OWL Full document
- Only some RDF documents are OWL Lite or OWL DC
- Constraining an RDF document to be OWL Lite or DL
 - Every individual must have class membership (at least owl:thing)
 - URIs for classes, properties, and individuals must be mutually disjoint.

Description Logics

- Fragment of first-order logic designed for logical representation of object-oriented formalisms
- frames/classes/concepts
- sets of objects
- roles/properties
- binary relations on objects
- individuals
- Representation as a collection of statements, with unary and binary predicates that stand for concepts and roles, from which deductions can be made
- High expressivity with decidability and completeness
 - Decidable fragment of FOL

Description Logics Primitives

- Atomic Concept
 - Human
- Atomic Role
 - likes
- Conjunction
 - human intersection male
- Disjunction
 - nice union rich
- Negation
 - not rich
- Existential Restriction
 - exists has-child.Human
- Value Restriction
 - for-all has-child.Blond
- Number Restriction
 - ≥ 2 has-wheels
- Inverse Role
 - has-child, has-parent
- Transitive role
 - has-child

Description Logic - Tboxes

- Terminological knowledge
- Concept Definitions
 - Father is conjunction of Man and has-child.Human
- Axioms
 - motorcycle subset-of vehicle
 - has-favorite.Brewery subrelation-of drinks.Beer
Description Logics: Aboxes

- Assertional knowledge
- Concept assertions
 - John is a Man
- Role assertions
 - has-child(John, Bill)

Description Logics: Basic Inferencing

- Subsumption
 - Is C1 subclass-of C2
 - Compute taxonomy
- Consistency
 - Can C have any individuals

Namespaces and OWL

```xml
<owl:Class rdf:ID="Jilerry"/>
<owl:Class rdf:ID="Region"/>
<owl:Class rdf:ID="ConsumableThing"/>

<owl:Class rdf:ID="Wine"/>
<owl:equivalentClass rdf:resource="#Food/FoodableLiquid"/>
<rdf:label xml:lang="en">Wine</rdf:label>
<rdf:label xml:lang="fr">Vino</rdf:label>
```

Why owl:Class vs. rdfs:Class

- Rdfs:Class is "class of all classes"
- In DL class cannot be treated as individuals (undecidable)
- Thus owl:Class, which is expressed as rdfs:subClassOf rdfs:Class
 - No problem for standard rdf processors since an owl:Class is a rdfs:Class
- Note: there are other times you want to treat class of individuals
 - Class drinkable liquids has instances wine, beer, ...
 - Class wine has instances merlot, chardonnay, zinfandel, ...

OWL Class Definition

```
<owl:Class rdf:ID="Jilerry"/>
<owl:Class rdf:ID="Region"/>
<owl:Class rdf:ID="ConsumableThing"/>

<owl:Class rdf:ID="Wine"/>
<owl:equivalentClass rdf:resource="#Food/FoodableLiquid"/>
<rdf:label xml:lang="en">Wine</rdf:label>
<rdf:label xml:lang="fr">Vino</rdf:label>
```

OWL class building operations

- disjointWith
 - No vegetarians are carnivores
- sameClassAs (equivalence)
- Enumerations (on instances)
 - The Ivy League is Cornell, Harvard, Yale,
- Boolean set semantics (on classes)
 - Union (logical disjunction)
 - Class parent is union of mother, father
 - Intersection (logical conjunction of class with properties)
 - Class WhiteWine is conjunction of things of class wine and have property white
 - complimentOf (logical negation)
 - Class vegetarian is disjunct of class carnivore
OWL Properties

- Transitive Property
 - \(P(x,y) \) and \(P(y,z) \) \(\rightarrow P(x,z) \)
- Symmetric Property
 - \(P(x,y) \) if \(P(y,x) \)
- Functional Property
 - \(P(x,y) \) and \(P(x,z) \) \(\rightarrow y = z \)
- inverseOf
 - \(P(x,y) \) if \(P(y,x) \)
- Inverse Functional Property
 - \(P(x,y) \) and \(P(z,x) \) \(\rightarrow y = z \)
- Cardinality
 - Only 0 or 1 in lite and full

OWL DataTypes

- Full use of XML schema data type definitions
- Examples
 - Define a type age that must be a non-negative integer
 - Define a type clothing size that is an enumeration “small” “medium” “large”

OWL Instance Creation

- Create individual objects filling in slot/attribute/property definitions

```xml
<Person ref:ID="William Arms">
  <rdfs:label>Bill</rdfs:label>
  <age><xsd:integer rdf:value="57"></age>
  <shoesize><xsd:decimal rdf:value="10.5"></shoesize>
</Person>
```

OWL Lite Summary

- Class/Property
- Ontology
- Annotation
- Restrictions
- Properties
- Cardinality
- Inverse Information

OWL DL and Full Summary

- Class Actions:
 - subClassOf
 - subPropertyOf
 - equivalentClass
 - owl:equivalence
- Boolean Combinations of Class Expressions:
 - and
 - or
 - xor
 - inclusiveOr
- Arbitrary Cardinality
- Filler Information:
 - hasValue
OWL DL vs. OWL-Full

- Same vocabulary
- OWL DL restrictions
 - Type separation
 - Class can not also be an individual or property
 - Property can not also be an individual or class
 - Separation of ObjectProperties and DatatypeProperties

Language Comparison

<table>
<thead>
<tr>
<th></th>
<th>XML</th>
<th>XSD</th>
<th>RDF(S)</th>
<th>OWL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bounded lists</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cardinality constraints (Kleene operations)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Class expressions (intersection, complement)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data types</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enumerations</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Equivalence (properties, classes, instances)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formal semantics (model-theoretic & axiomatic)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inheritance</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inference (transitivity, inverse)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualified constraints (“all children are of type person”)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Realization</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Storing and querying RDF-based models

- Persistent storage implementations
 - Relational databases (mysql, postgres, oracle)
 - Mapped files
- Relational databases (mysql, postgres, oracle)

- Query languages
 - RDQL (Kowari, Jena)
 - SPARQL
 - W3C working draft
 - http://www.w3.org/TR/rdf-sparql-query/

Protégé and RACER – tools for building, manipulating and reasoning over ontologies

- Protégé - http://protege.stanford.edu/
 - Use the 3.x version
 - Multiple plug-ins are available
- Protégé OWL plug-in
 - http://protege.stanford.edu/plugins/owl/
- Other semantic web related plug-ins
- Racer
 - Description Logic based reasoning engine
 - Server-based
 - Integrates with Protégé-OWL

RDQL-by-example

- RDF source
- Queries
 - http://www.cs.cornell.edu/courses/cs431/2006sp/examples/RDQL/vc.q1