Building the Semantic Web

CS 431 - March 27, 2006
Carl Lagoze - Cornell University
Acknowledgements for various slides and ideas

- Ian Horrocks (Manchester U.K.)
- Eric Miller (W3C)
- Dieter Fensel (Berlin)
- Volker Haarslev (Montreal)
Original Web Vision
Web of relationships amongst named objects
Current Web ("Syntactic" Web)

- Untyped resources named by URLs
- Untyped relationships (href with anchor text)
- User oriented - document rendering
- Machines must infer information
The Information in a Web Page

- Markup connotes semantics (bold, colors, font...)
- Humans interpret semantics
- Rendering semantics is not clear or available to machines
Why is XML not enough?
but from the machines point of view...
XMLs helps but not much...

• Descendent of DTD’s
 - Mostly a structuring language
 - Doesn’t express “meaning” of structure

• Problems with knowledge representation
 - Poor expression of concepts, relationships, and subsumption
 - No basis in formal logic, limited if any basis for reasoning
 - So, can’t do:
 • Ford is a “kind of” car
 • VW is a “kind of” car
 • Joe “has a” Ford
 • Sue “has a” VW
 • Joe and Sue both have cars
Semantic Web

- Resources typed, types defined by URIs
- Relationships typed, types defined by URIs
- Types are structured and are first-class
- Machines can inference
Why do we “need” a semantic web?

- Keyword search engines will continue to improve but...
 - High recall, low precision
 - Results sensitive to vocabulary
 - Result granularity is single web page
 - They don’t capture “meaning”
- In constrained domains (i.e., not across the entire web) better information management, knowledge representation makes sense
- “Maybe” a common infrastructure for KR will lead to web-wide “semantics”
- Some of these tools are useful right now (e.g., Project 2)
Motivating the “Semantic Web”

M. Doe illustrated the book “Best Stories”

Mary Doe animated the cartoon “Best Stories – the movie”

Illustration is a type of contribution

Cartoons and Books are types of Works

animation is a type of contribution

M. Doe and Mary Doe are pseudonyms for Susan Mann

Show me the works to which Susan Mann contributed?
Components of the Semantic Web
Beware of the Hype

THE SEMANTIC WEB

A new form of Web content that is meaningful to computers will unleash a revolution of new abilities

by
TIM BERNEES-LEE,
JAMES HENDLER and
ORA LASSILA
Beware of the Hype

- Hype seems to suggest that Semantic Web means: “semantics + web = AI”
 - “A new form of Web content that is meaningful to computers will unleash a revolution of new abilities”

- More realistic to think of it as meaning: “semantics + web + AI = more useful web”
 - Realising the complete “vision” is too hard for now (probably)
 - But we can make a start by adding semantic annotation to web resources

Images from Christine Thompson and David Booth
Knowledge Representation

- **Objects/Instances/Individuals**
 - Elements of the domain of discourse
 - Equivalent to constants in FOL
- **Types/Classes/Concepts**
 - Sets of objects sharing certain characteristics
 - Equivalent to unary predicates in FOL
- **Relations/Properties/ Roles**
 - Sets of pairs (tuples) of objects
 - Equivalent to binary predicates in FOL

- **Such languages are/can be:**
 - Well understood
 - Formally specified
 - (Relatively) easy to use
 - Amenable to machine processing
There has been lots of work on Knowledge Representation but...

“The challenge of the Semantic Web is to find a representation language powerful enough to support automated reasoning but simple enough to be usable.”

“All tractable languages are useless; all useful languages are intractable.”
Challenges of Web to KR

- Scale
- Distributed
- Dynamic
- Paradoxes
- Incomplete language
 - Closed world vs. open world assumptions
Modeling & Encoding Knowledge: RDF

- RDF (Resource Description Format)
- Provides enabling technology for richly-structured information
 - Support for and integration of multiple independent vocabularies
- Rich data model supporting notions of distinct entities and properties
 - Formal model with basis in logic
- Expressible in machine readable manner (e.g., XML)
RDF Components

- Formal data model
- Syntax for interchange of data
- Schema Type system (schema model)
- Syntax for machine-understandable schemas
- Query and profile protocols

- Ontologies layered on top via extensions to base RDF language (DAML, OIL, OWL)
RDF Data Model

• Provides underlying structural foundation for the expression of application (instance) data models
 - for consistent encoding, exchange and processing of information
 - Provides for a basis for interoperability
• Individual communities can then define and express semantics on the basic model
• Model is distinct from the syntax for expressing it
 - XML
 - N3
 - triple notation
 - relational databases (triple-stores in tables)
RDF Data Model

• Directed labeled graphs
• Model elements
 - Resource
 - Property
 - Value
 - Statement
 - Containers
• Nodes are all identified using URIs
RDF Model Primitives

Resource -> Property -> Resource

Statement
Simple Example

Resource

Author

“Eric”
RDF Syntax

- RDF Model defines a formal relationships among resources, properties and values
- Syntax is required to...
 - Store instances of the model into files
 - Communicate files from one application to another
- XML is one well-supported syntax, N3 is another
RDF Model Example #1

URI:R

- dc: Title > “CIMI Presentation”
- dc: Creator > “Eric Miller”
<?xml version="1.0"?>
<rdf:RDF xmlns:gss="http://www.w3.org/2001/11/IsaViz/graphstylesheets#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.0/">
 <rdf:Description rdf:about="info:uri1">
 <dc:Title>RDF Presentation</dc:Title>
 <dc:Creator>Eric Miller</dc:Creator>
 </rdf:Description>
</rdf:RDF>
N3 Syntax - Example #1

@prefix : #.

<info:url>
 <http://purl.org/dc/elements/1.0/Creator>
 "Eric Miller" ;
 <http://purl.org/dc/elements/1.0/Title>
 "RDF Presentation" .
RDF Model Example #2
<?xml version="1.0"?>
<rdf:RDF xmlns:gss="http://www.w3.org/2001/11/lsaViz/graphstylesheets#"
 xml:base="file:/C:/lsaViz/tmp/tmp41406.rdf">
 <bib:Description rdf:about="info:uri2">
 <bib:Affiliation rdf:resource="http://www.oclc.org"/>
 <bib:EMail>emiller@w3.org</bib:EMail>
 <bib:Name>Eric Miller</bib:Name>
 </bib:Description>
 <bib:Description rdf:about="info:uri1">
 <oa:Creator rdf:resource="info:uri2"/>
 <dc:Title>RDF Presentation</dc:Title>
 </bib:Description>
</rdf:RDF>
@prefix oa: <http://agents.org/elements#> .
@prefix bib: <http://www.bib.org/persons#> .
@prefix dc: <http://purl.org/dc/elements/1.0/> .
@prefix : <#> .

<info:uri2>
 <bib:Affiliation>
 <http://www.oclc.org> ;
 <bib:EMail>
 "emiller@w3.org" ;
 <bib:Name>
 "Eric Miller" .

<info:uri1>
 <oa:Creator>
 <info:uri2> ;
 <dc:Title>
 "RDF Presentation" .
RDF Model Example #3
Reification

URI:R
 dc: Title
 "CIMI Presentation"

URI:ERIC
 dc: Creator
 "LOC"
 bib: Name
 "Eric Miller"
 bib: Email
 "emiller@oclc.org"

URI:OCLC
 admin: On
 "03-09-99"
 admin: For
 "...

admin: By
 "..."
RDF Containers

• Permit the aggregation of several values for a property
• Express multiple aggregation semantics
 - unordered
 - sequential or priority order
 - alternative
RDF Containers

• Bag
 - unordered grouping

• Sequence
 - ordered grouping

• Alternatives
 - alternate values
 - need to choose
 - at least one value
 - first value is default or preferred value
RDF - Bag

- Unordered group
- “Carl Lagoze and Stuart Weibel are co-authors”

<BIB:Author>
 <Bag>
 Carl Lagoze
 Stuart Weibel
 </Bag>
</BIB:Author>
RDF - Sequence

- Ordered or priority group
- “Carl Lagoze is primary author and Stuart Weibel is second author”

```xml
<BIB:Author>
  <Seq>
    <li>Carl Lagoze</li>
    <li>Stuart Weibel</li>
  </Seq>
</BIB:Author>
```
RDF - Alt

- Client chooses one of several values
- First value is default
- “The distance is 15 kilometers or 9.3 miles”

<DC:Coverage>
 <Alt>
 15KM
 9.3M
 </Alt>
</DC:Coverage>
Container Example
RDF/XML for Container

```xml
<?xml version="1.0"?>
  xmlns:j.0="http://example.org/students/vocab#" xmlns:oa="http://agents.org/elements#"
  xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
  xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:s="http://example.org/packages/vocab#"
  xmlns:dc="http://purl.org/dc/elements/1.0/"
  xml:base="file:/C:/Documents and Settings/Carl Lagoze/Desktop/ex2rdf.n3">
  <rdf:Description rdf:about="http://example.org/courses/6.001">
    <j.0:students>
      <rdf:Bag>
        <rdf:li rdf:resource="http://example.org/students/Amy"/>
        <rdf:li rdf:resource="http://example.org/students/Mohamed"/>
        <rdf:li rdf:resource="http://example.org/students/Johann"/>
        <rdf:li rdf:resource="http://example.org/students/Maria"/>
        <rdf:li rdf:resource="http://example.org/students/Phuong"/>
      </rdf:Bag>
    </j.0:students>
  </rdf:Description>
</rdf:RDF>
```
Base: file:/C:/Documents and Settings/Carl Lagoze/Desktop/ex2rdf.n3
@prefix : <#> .

<http://example.org/courses/6.001>
 <http://example.org/students/vocab#students>
 [:Bag <http://www.w3.org/1999/02/22-rdf-syntax-ns#_1>
 <http://example.org/students/Amy> ;
 <http://www.w3.org/1999/02/22-rdf-syntax-ns#_2>
 <http://example.org/students/Mohamed> ;
 <http://www.w3.org/1999/02/22-rdf-syntax-ns#_3>
 <http://example.org/students/Johann> ;
 <http://www.w3.org/1999/02/22-rdf-syntax-ns#_4>
 <http://example.org/students/Maria> ;
 <http://www.w3.org/1999/02/22-rdf-syntax-ns#_5>
 <http://example.org/students/Phuong>
] .
RDF meta-model

• RDF basic types
 - rdf:Resource - everything that can be identified (with a URI)
 - rdf:Property - specialization of a resource expressing a binary relation between two resources
 - Rdf:type - predefined property to express that subject of property is considered to be an instance of that category or class defined by the value of the property
 - rdf:statement - a triple with properties rdf:subject, rdf:predicate, rdf:object

• An RDF statement is a triple consisting of a resource (subject), a property and a second resource (object)
 - (:s :p :o)

• Expressible also as binary relations
 - P(S,O) - e.g., Title(R, “War & Peace”)

RDF triple model

<table>
<thead>
<tr>
<th>explicit triple</th>
<th>Allows inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(:s :p :o)</td>
<td>(:s rdf:type rdf:Resource)</td>
</tr>
<tr>
<td></td>
<td>(:p rdf:type rdf:Property)</td>
</tr>
<tr>
<td></td>
<td>(:o rdf:type rdf:Resource)</td>
</tr>
</tbody>
</table>
RDF statements and basic types

- RDF statement: WYA -> creator -> Digital Libraries
- RDF subject: WYA
- RDF predicate: creator
- RDF object: Digital Libraries
- RDF property: creator
Reification - Statements about statements

"CL says 'WYA wrote Digital Libraries'"

Diagram:
- CL assertedBy WYA
- WYA rdf:subject rdf:statement
- rdf:statement rdf:subject WYA
- rdf:statement rdf:object creator
- creator rdf:property rdf:statement
- rdf:statement rdf:property Digital Libraries