Ontology Design

CS 431 - March 15, 2006
Carl Lagoze - Cornell University
What is an ontology?

• Many definitions from different domains
 - Philosophy - A Systematic Account of Existence
 - A.I. - An explicit specification of a conceptualization (the objects, concepts, and other entities that are assumed to exist in some area of interest and the relationships that hold among them) Gruber 1993

• Our context – web semantic interoperability
 - Formal explicit description in a domain of discourse (classes, concepts)
 - Attributes of concepts (slots, properties, relationships)
 - Slot restrictions (facets)

• A Knowledge Base is an ontology combined with instance data
Overview of Ontology and Knowledge Base Development

• Define the classes
• Arrange the classes into a taxonomic hierarchy
 – establish class/sub-class relationships
• Define slots and their restrictions
• Define instances
Why Ontologies (1)?

• Sharing a formalized definition of information structure among people or software
 - e.g., ShopBots extracting and aggregating information from different sites
 - formalization of notation and decidability is important
Why Ontologies (2)?

• Enable reuse of domain knowledge
 - modularize development process
 - e.g., share common concepts of time (events, situations) in domain specific ontologies
Why Ontologies(3)?

- Separate operational from domain knowledge
 - avoid hard-coding domain knowledge into programs
 - parameterize code to allow use in different domains
 - allow easy modification of domain knowledge without code changes
Some guiding rules of ontology design

• In most cases there are many ways to model a domain
• Ontology development, like program development, is by nature iterative
• The ontology should closely correspond to the objects (nouns) and relationships (verbs) in the sentences describing your domain of interest
Ontology Development (1)

• Define the scope
 - What domain does it describe?
 - What applications will be built upon it?
 - What are the questions for which it should provide answers?
 * competency questions that serve as tests of ontology.
 - Who are its users and maintainers?
 - Limiting the scope is vital to a usable ontology.
 * Don’t include extraneous information!
Ontology Development (2)

• Search available online ontologies and determine utility of them.
 - http://www.daml.org/ontologies/
 - http://protege.stanford.edu/plugins/owl/owl-library/

• Increases possibility of interoperability with other applications
Ontology Development (3)

- Enumerate important terms in ontology
 - Concepts and properties
 - Ignore relationships for now, just brainstorm
- Establish a naming convention
 - capitalization
 - use of delimiters
 - singular or plural
 - prefixes
Ontology Development (4)

• Define concepts and concept hierarchy
 - Top-down
 - Bottom-up
 - Remember transitivity of class hierarchy
 - Depth and breadth issues
 • Avoid single sub-class
 • Excessive # of siblings (> 12) indicates possible need for new sub-classing
Ontology Development (5)

- Define slots or properties of classes
 - data properties
 - names
 - flavors
 - colors
 - object properties
 - whole/part relationships
 - other semantic relationships among individuals
 - Reflect class/sub-class hierarchy
 - Slots should distinguish sub-classes
 - Attach slot at most general point in hierarchy
 - Remember that all sub-classes inherit slot
Ontology Development (6)

• Define facets of slots
 - Data type of data slots
 - Domain and range of object slots
 • Again obey class generality rule
 - Slot cardinality
Ontology Development (7)

- Test with instances
Issues (1) - Multiple Inheritance

- Most systems allow it
- Frequently necessary to model a domain
- Make sure slot inheritance works
Issues (2) - Classes vs. Slots

• E.g., wine with slot color, or sub-classes for red, white, rose

• If classes with different slot values become restrictions for other slots in other classes, create a new class for distinction
 - example - consider car color vs. wine color
Issues (3) - Instance or Class?

• **Answer is domain specific and application specific**
 - Magnet Pinot Noir vs. Magnet Pinot Noir 2003

• **Remember that instances are essentially the leaves in the knowledge base hierarchy**
 - no notion of sub-instance

• **Instances should be answers to competency questions**
More Issues

• Disjoint classes
 - Can’t have any instances in common
 - Pay attention to open world issues

• Inverse slots
 - Usually unnecessary to represent
 • system can infer information
 • “reverse queries” are possible
 - Sometime useful for understanding
 • system provide way of automatically completing
Ontology Tool

- Protégé
 - http://protege.stanford.edu/
- Open Source, Java Based
- Export to a variety of formats