1. Consider a program to evaluate

\[F(a, b) = \sqrt{a^2 + b^2} - |a|. \]

Implementing this formula directly in Matlab (i.e., as \(\text{sqrt}(a^2+b^2)-\text{abs}(a) \)) is prone to overflow (e.g., in the case \(a, b \approx 10^{180} \)), underflow (e.g., in the case \(a, b \approx 10^{-180} \)), and severe cancellation (e.g., in the case \(|a| \gg |b| \)). Write (on paper) a matlab program to evaluate \(F \) that should be more robust against overflow, underflow and cancellation than the direct implementation. It is OK if your program needs some \texttt{if} statements.

2. Let \(U \) be an \(n \times n \) nonsingular upper triangular matrix. (a) Show that \(\| U^{-1} \|_\infty \geq 1/\min_i |U(i, i)| \). This fact leads to a simple but not very reliable condition-number estimator (namely, \(\| U^{-1} \|_\infty \approx 1/\min_i |U(i, i)| \)) for upper triangular matrices. (b) In fact, show that this estimator is not reliable by constructing a \(2 \times 2 \) upper triangular matrix \(U \) in which \(\| U^{-1} \|_\infty \geq 10^8/\min_i |U(i, i)| \).

3. Let \(A \) be a symmetric positive \textit{semidefinite} matrix.

(a) Show that \(A(1, 1) \) must be nonnegative.

(b) Show that if \(A(1, 1) = 0 \), then the whole first row and column of \(A \) must be all zeros.

These two facts play a role in an efficient algorithm for testing whether a matrix is positive semidefinite.

4. Write a Matlab function \texttt{invlower} that computes \(L^{-1} \) given a lower triangular matrix \(L \) by applying forward substitution to the columns of the identity matrix. Make sure the inner loop is vectorized, and make sure that unnecessary operations on 0’s are omitted.

Then write an m-file called \texttt{mycond} that computes the condition number of a lower triangular matrix by multiplying its norm (the matrix 2-norm, which is computed by \texttt{norm}) in matlab by the norm of the inverse as computed by \texttt{invlower}. Compare this to the builtin \texttt{cond} function. They should nearly identical answers for reasonably well-conditioned matrices, e.g., the matrix returned by \texttt{tril(randn(10,10))}. Which seems to be more accurate for extremely ill-conditioned lower triangular matrices? You can make a lower triangular matrix ill-conditioned by putting a number very close to 0 (say 1e-40) on the main diagonal, or by putting a very big number in an off-diagonal position, or both. You can get some idea of which routine (\texttt{cond} vs \texttt{mycond}) is more accurate.
accurate by checking whether the inequalities of question 1 are satisfied by the results. Hand in listings of all m-files, some sample runs, and a paragraph of conclusions.