University Software

- Data:
 - Student records: name, address, college, major, GPA, …
 - Accounts: number, description, current balance, …
 - Schedules: course, rooms, exams, …

- Operations:
 - Mailing list creation
 - Tuition billing
 - Finance charges
 - Balance update
 - Room scheduling
 - Exam scheduling

Computational Biology

- Data:
 - Genomes: sequences of A,C,G,T
 - Proteins: sequences of base triplets
 - Geometric structure
 - Taxonomies: hierarchies of species

- Operations:
 - Similarity of genomes
 - Determining geometry from base sequences
 - Determining evolutionary hierarchies from genomes

Data Structures

- Schemes for laying out data in memory and on disk, and algorithms for retrieving and updating that data.

- Quality:
 - Space: how much space is needed to store n items.
 - Time: how much time is needed to retrieve/update if there are n items.

Why would you care?

- Fundamental part of many software systems is storage and manipulation of data.
- Many computer science problems are impossible with poor data structure choice.

CS410 Outline

- Tools:
 - Asymptotic notation, recurrence relations, amortisation, ADTs.

- Structures:
 - Stacks, queues, linked lists, trees, heaps, balanced trees, red-black trees, splay trees, random treaps, tries, hashing, quad trees, suffix trees.

- Algorithms:
 - Sorting/searching, graphs, compression.

Running Times

- Database of n items.
- Operations: find, insert, delete.
- Interested in running time of the operations as a function of n.
- $\Theta(\log n), \Theta(n), \Theta(n \log n), \Theta(n^2)$
Recurrence Relations (CLR 4)

- Recursive algorithms are easy to analyse as recurrence relations.
- Factorial:
  ```java
  int fact(int n) {
    if (n<=1)
      return 0
    else
      return n*fact(n-1);
  }
  ```
 - Running time:
 - \(T(n) = c_1 \) if \(n \leq 1 \)
 - \(T(n) = T(n-1)+c_2 \) otherwise
 - Solution: \(T(n) \in \Theta(n) \)

Fibonacci

```java
int fib(int n) {
  if (n<=2) return 1
  else return fib(n-1)+fib(n-2);
}
```  

- Recurrence:
 - \(T(n) = c_1 \) if \(n \leq 2 \)
 - \(T(n) = T(n-1)+T(n-2)+c_2 \) otherwise

Binary Search

```java
int bin_search(Object a[], Object key,int low,int high) {
  if (high<=low) return low;
  int mid = (low+high)/2;
  if (a[mid]<=key)
    return bin_search(a,key,mid,high);
  else
    return bin_search(a,key,low,mid);
}
```  

- Recurrence:
 - \(T(n) = c_1 \) if \(n \leq 0 \)
 - \(T(n) = T(n/2)+c_2 \) otherwise

Solution Techniques

- Guess and verify (Substitution)
- Iteration
- Master Theorem

Recurrence Relations

- A function \(T(n) \) defined in terms of \(T \) for smaller values of \(n \).
- Solution to a recurrence relation is a definition of \(T(n) \) not defined in terms of \(T \).
- Method turns running time analysis into a clean mathematical problem.

Guess and Verify

- Guess a solution and then prove that its correct by induction on \(n \).
- Example: factorial is \(O(n) \) guess that \(T(n) \leq cn \) for some \(c \).
- Base case (\(n=1 \)): \(T(n) = c_1 \leq cn \) if \(c_1 \leq c \)
- Inductive case (\(n=k+1 \)):
 \(T(k+1) = T(k)+c_2 \leq ck+c_2 \leq c(k+1) \) if \(c_2 \leq c \)
Fibonacci

- Fibonacci is $O(2^n)$, guess $T(n) \leq cn^2$
- Base case ($n=0$): $T(n) = c_1 \leq cn^2$ if $c_1 \leq c$
- Base case ($n=1$): $T(n) = c_1 \leq cn^2$ if $c_1 \leq 2c$
- Inductive case ($n=k+2, k \geq 1$):

 \[
 T(k+2) = T(k+1) + T(k) + c_2 \leq 2^{k+1} + c_2 \leq 2n^2
 \]
 \[
 \leq 2c^2
 \]

Binary Search

- Binary search is $\Omega(\log n)$ guess $c \log n \leq T(n)$
- Base case ($n=1$): $c \log n = 0 \leq c_1, c_2 = T(n)$
- Inductive case ($n=1$):

 \[
 T(n) = T(n/2) \leq c_2 \leq c \log n/2 + c_2 = (c \log n) - c + c_2 \leq c \log n
 \]
 \[
 \text{if } c_2 \leq c
 \]

Change of Variable

- $T(n) = 2T(n/2) + \log n$
- Rename $n = \log m$
- $T(2^n) = 2T(2^{n/2}) + m$
- $S(m) = T(2^m)$, $S(m) = 2S(m/2) + m$
- $S(m) \in O(m \log m)$
- $T(n) \in O(n \log n \log \log n)$

Iteration

- $S(m) = m + 2S(m/2) = m + 2m/2 + 4S(m/4) = m + 2m/2 + \ldots + mS(m/m) = m \log_2 m$
- Two difficulties:
 - How many terms in sum
 - What does each sum look like

More Iteration

- Consider binary search again:

 \[
 T(n) = c_2 + T(n/2) = c_2 + c_2 + \ldots + c_2 + T(n/n) = c_2 + c_2 + \ldots + c_2 + c_1
 \]
 \[
 = c_2 \log n + c_1
 \]

Master Theorem

- If $a \geq 1$ and $b > 1$ are constants, $f(n)$ a function, and $T(n) = aT(n/b) + f(n)$ then $T(n)$ has the following solution:
 - If $f(n) \in O(n^{\log_b a-\varepsilon})$ for $\varepsilon > 0$ then $T(n) \in \Theta(n^{\log_b a})$
 - If $f(n) \in \Theta(n^{\log_b a})$ then $T(n) \in \Theta(n^{\log_b a} \log n)$
 - If $f(n) \in \Omega(n^{\log_b a + \varepsilon})$ for $\varepsilon > 0$ and $af(n/b) \leq cf(n)$ for some $c < 1$ and all sufficiently large n then $T(n) \in \Theta(f(n))$
Master Theorem Intuition

- Two parts \(aT(n/b) \) and \(f(n) \), the three cases correspond to which part is growing faster.
- \(aT(n/b) \) grows as \(n^{\log_b a} \)
- case 1 is where \(aT(n/b) \) grows faster
- case 2 is where they are same, this adds a \(\log n \) factor
- case 3 is where \(f(n) \) grows faster

Binary Search

- Recurrence:
 \[
 T(n) = \begin{cases}
 c_1 & \text{if } n \leq 0 \\
 T(n/2) + c_2 & \text{otherwise}
 \end{cases}
 \]
- \(a=1, b=2, f(n)=c_2 \)
- \(n^{\log_b a} = n^0 = 1 \)
- \(f(n) \in \Theta(n^{\log_b a}) \)
- case 2
- \(T(n) \in \Theta(n^{\log_b a} \log n) = \Theta(\log n) \)

Merge Sort

- Divide array into two, sort each part, merge results.
- Merge takes \(\Theta(n) \) running time.
- \(T(n) = 2T(n/2) + \Theta(n) \)
- \(a=2, b=2, f(n) = \Theta(n) \)
- \(n^{\log_b a} = n^1 = n \)
- case 2, \(T(n) \in \Theta(n^{\log_b a} \log n) = \Theta(n \log n) \)

Case 1

- \(T(n) = 8T(n/2) + n \)
- \(a=8, b=2, f(n) = n \)
- \(n^{\log_b a} = n^3 \)
- \(f(n) \in \Theta(n^{\log_b a}) \) for \(\varepsilon = 2 \)
- \(T(n) \in \Theta(n^{\log_b a} \log n) = \Theta(n^3) \)

Case 3

- \(T(n) = 4T(n/4) + n^2 \)
- \(a=4, b=4, f(n) = n^2 \)
- \(n^{\log_b a} = n \)
- \(f(n) \in \Omega(n^{\log_b a}) \) for \(\varepsilon = 1 \)
- Regularity: \(af(n/b) = ar^2/b^2 = a/b^2 f(n) \)
- \(T(n) \in \Theta(f(n)) = \Theta(n^2) \)