Problem 1 - 7.2.1. (b) Show that $B = \{a^n b^n c^i | i \leq n \}$ is not context free.

Proof: Let $z = a^k b^k c^k$, and suppose $z = uvwxy$ such that $vx \neq \epsilon$ and $|vw| \leq k$.

There are several ways we can do this:

1. v and x contain only a or only b. In this case, take $r = \omega^2 \omega x^y \omega = d a(k-l) b^k c^k$, or a similar formulation for b. Since there are more as than bs, $r \notin B$.

2. v and x contain both a and b. Take $r = \omega^0 \omega x^y \omega$. Since there are k bs, and the length of vw is bounded by k, if vwx contains as, it cannot also contain cs. Hence, r has fewer as and fewer bs than cs, and therefore $r \notin B$.

3. v and x contain both bs and cs. By the same reasoning as above, vwx can only contain bs and cs. Take $r = \omega^0 \omega x^y \omega$, which removes some of the bs, but keeps just as many as. Since there are more as than bs, r is not an element of B.

4. Finally, v and x contain only cs. In this case, we take $r = \omega^2 \omega x^y \omega$. Since v and x are composed of only cs, we increase the number of cs, keeping the number of as and bs constant, so r has more cs than as or bs. Hence, $r \notin B$.

Since we can always choose some i such that $uv^iwx^iy \notin B$, we have proved by the pumping lemma that B is not context free.

(c) Show that $C = \{c^p | p$ is prime$\}$ is not context free.

Proof: for any given k, let $z = 0^p$, where p is a prime greater than $k + 2$, so $|z| > k$. Suppose $z = uvwxy$ such that $|vx| \neq 0$ and $|vwx| \leq k$. Then let $i = p - |v| - |x|$. We claim that $r = uv^iwx^iy \notin C$.

First, let us define $|u| = a, |v| = b, |w| = c, |x| = d$ and $|y| = e$. The length of r is
\[
|uv^iwx^iy| = a + c + e + (p - b - d)(b + d) = p - b - d + (p - b - d)(b + d) = (p - b - d)(b + d + 1)
\]

Since $vw \neq \epsilon$, we know that $(b+d+1) > 1$. We chose $p > k+2$, so $b + d < k < k + 2 = p$, which means that $p - b - d \geq k + 2 - b - d > 1$. Hence $|r|$ has two factors, neither of which is 1, and so r must be composite, and therefore not in C. We conclude that, by the pumping lemma, C is not context free.

(f) Show that $F = \{ww^Rw | w$ is binary$\}$ is not context free.

Proof: let $w = 1^k 0^k$. We have three ways of dividing $z = w w^R w = 1^k 0^2 1^2 0^k$ into $uvwxy$.

- First, suppose wwx is part of the first block of ones (that is, it contains no zeroes). If we take $r = \omega^2 \omega x^y \omega$, then we have increased the number of ones in the first block. We know that our new w' must end in a zero, since r ends in a zero, so the first block of zeroes separates w' from $(w')^R w'$. There is no way of forming $w'(w')^R w'$ from this, so we know that $r \notin B$.

- A similar argument works if vwx is part of any of the other three contiguous blocks of ones or zeroes.

- Suppose vwx lies on the boundary between two blocks. Again, because of length restrictions, vwx can only lie on one boundary, and can’t span three blocks. Let $r = \omega^0 \omega x^y \omega$. We know that w' must begin with a one and end in a zero, so we still have $w' = 1^m 0^m$. However, r is no longer of the form $1^a 0^2 1^2 0^a$, so r cannot be in F.

Hence, by the pumping lemma, F is not context free.
Question 2 (7.2.5)

(a) Show \(\{0^i1^j0^k | j = \text{max}(i, k)\}\) is not a CFL using Ogden’s lemma:
We begin selecting \(z = 0^{2n}1^{2n}0^n\) and marking all the last 0’s (for example, \(z = 0^{2n}1^{2n}0^n\)). If we select \(v\) or \(x\) to have both 0’s and 1’s in it, we can instantly see that our syntax is no longer correct. If we select \(v\) to be 0 or 1 then we can also see that our original assumption that \(j = \text{max}(i, k)\) no longer holds because one of the numbers will grow while the other will remain the same. Our only choice is to have \(v\) and \(x\) exclusively contain 0. When we start pumping it, at some point the number of 0\((\text{corresponding to} k)\) will grow to be larger than \(i\) and \(j\), therefore once again breaking our condition that \(j = \text{max}(i, k)\). Therefore, the language is not a CFL.

(b) Show \(\{a^n b^n c^i | i \neq n\}\) is not a CFL using Ogden’s lemma:
Consider the case where we choose \(z\) to be \(a^n b^n c^{n!+n}\) (where \(n\) is the constant from Ogden’s lemma). We mark all the \(a\)'s and all the \(b\)'s. We first note that if \(v\) or \(x\) contain a mix of \(a\)'s and \(b\)'s, then we can see that with \(i = 2\), the structure of the resulting grammar is no longer correct. We now look at the case where \(v = a^\alpha\) and \(x = b^\beta\). If \(\alpha \neq \beta\) then we can also see that the number of \(a\)'s and \(b\)'s will be different, therefore \(\alpha = \beta\). We can now call \(\gamma = \alpha = \beta\) and see that our final string will be of the form
\[a^{n+\gamma(i-1)} b^{n+\gamma(i-1)} c^{n!+n}\]

Therefore, if we set the exponents of \(a\) or \(b\) equal to \(c\), we get that
\[n + \gamma(i - 1) = n! + n\]
\[\gamma(i - 1) = n!\]
\[i - 1 = \frac{n!}{\gamma}\]

Since \(\gamma \leq n\) we know that the right side divides evenly and therefore we can pick an \(i\) that satisfies this constraint, therefore our original constraint of \(\{a^n b^n c^i | i \neq n\}\) is not satisfied, therefore we do not have a CFL.
7.4.5

Let N_{ijA} denote the number of distinct parse trees for substring $a_i \ldots a_j$ of the input w, starting from variable A (i.e., with A as the root of the parse tree). Note that we are using A here as a metavariable, not any particular variable in G that might have been named A. N_{1nS}, where $n = |w|$ and S the starting variable of G, is the value we are interested in. We can augment the CYK algorithm to compute each N_{ijA} as we compute the corresponding X_{ij}. That is, after computing X_{ij} in CYK, we proceed to compute N_{ijA} for each variable A.

Initially, we set all N_{ijA} to 0.

For the base case, we can compute the first row of N as follows. N_{iiA} is 1 if $A \rightarrow a_i$ is a production of G. Otherwise, N_{iiA} remains 0.

To compute N_{ijA}, $j - i > 0$, we look at each of the pairs $(X_{ii}, X_{i+1,j}), \ldots, (X_{i,j-1}, X_{jj})$ the same way plain CYK did. For each pair, we look at each element of the cross product of that pair. That is, for $(X_{ik}, X_{k+1,j})$, we consider all pairs (B, C) such that $B \in X_{ik}$ and $C \in X_{k+1,j}$. If $A \rightarrow BC$ is a production, we increment N_{ijA} by $N_{ikB} \times N_{k+1,j,C}$.

When the algorithm completes, N_{1nS} would contain the solution.

For the special case when $w = \varepsilon$, this algorithm won’t work, but the answer is easy. It’s 1 if $S \rightarrow \varepsilon$ is a production, 0 otherwise.
Problem 4 (a). The set $\{a^ib^jc^i | i, j \geq 0\}$ is a DCFL because we can construct a DPDA M accepting it. Let $M = (\{q_S, q_A, q_B, q_C\}, \{a, b, c\}, \{A, Z_0\}, \delta, q_S, Z_0, \emptyset)$ be a DPDA that accepts by empty stack. We define δ as follows:

\[
\begin{align*}
\delta(q_S, \epsilon, Z_0) &= (q_A, \epsilon) \\
\delta(q_A, a, A) &= (q_A, AA) \\
\delta(q_A, b, A) &= (q_B, A) \\
\delta(q_B, b, A) &= (q_B, A) \\
\delta(q_B, c, A) &= (q_C, \epsilon) \\
\delta(q_C, c, A) &= (q_C, \epsilon)
\end{align*}
\]

Intuitively, the DPDA pushes an A onto the stack for each a it sees at the beginning of the input. Then it reads the bs without altering the stack, and then for each c it reads, it pops an A off the stack. If the number of as equals the number of cs, then the stack will be empty at the end of the input.

Problem 4 (b). Assume WLOG that L is a DCFL accepted by a DPDA $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, which accepts by final state. Then the DPDA $M' = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, Q - F)$ accepts \overline{L}. To see this, notice that running M on any input string w will put the machine in exactly one state q_w, since it is deterministic. Thus, after running M' on input w it will also end in state q_w. This state is final in M iff it is not final in M', and so w is in $L(M)$ iff it is not in $L(M')$. So $L(M') = \overline{L(M)} = \overline{L}$.

Problem 4 (c). We have shown that $L_1 = \{a^ib^jc^i | i, j \geq 0\}$ is a DCFL, and we can similarly show that $L_2 = \{a^ib^jc^i | i, j \geq 0\}$ is a DCFL. However, we know that $L_1 \cap L_2 = \{a^ib^jc^i | i \geq 0\}$ is not a CFL, and thus it is not a DCFL either (since DCFLs are a subset of CFLs).

Problem 4 (d). We can show that $L_1 = \{a^ib^jc^k | i, j, k \geq 0, i \neq j\}$ and $L_2 = \{a^ib^jc^k | i, j, k \geq 0, j \neq k\}$ are both DCFLs. Assume for a contradiction that $L_1 \cup L_2$ is a DCFL. It follows by (b) that its complement, $\overline{L_1} \cap \overline{L_2}$ is a DCFL, and thus is a CFL. Since CFLs are closed under intersection with regular sets, we have that $\{a^ib^jc^k\} \cap (\overline{L_1} \cap \overline{L_2})$ is also a CFL. But this set is equal to $\{a^ib^jc^i | i \geq 0\}$, which we already know to be not context-free.