First, let me give you a nice clean version of the proof I did in class:

Let $G = (\Sigma, N, P, S)$, where $\Sigma = \{a, b\}$, $N = \{S\}$, $P = \{S \rightarrow \varepsilon, S \rightarrow aSb\}$

Claim: $L(G) = \{a^n b^n \mid n \in \mathbb{N}\}$

Proof:

$\{a^n b^n \mid n \in \mathbb{N}\} \subseteq L(G)$: We proceed by induction on n. Base case: if $n = 0$, $a^0 b^0 = \varepsilon \in L(G)$ since $S \rightarrow \varepsilon$ is a production in P. Inductive step: Suppose $a^n b^n \in L(G)$. Then there exists a derivation $S \vdash a^n b^n$. Now, this gives us the derivation $S \rightarrow aSb \vdash a(a^n b^n)b = a^{n+1} b^{n+1}$, where the first arrow is via the production $S \rightarrow aSb$, and the second is via the derivation that must exist by the inductive hypothesis.

$L(G) \subseteq \{a^n b^n \mid n \in \mathbb{N}\}$: For $x \in L(G)$, we proceed by induction on the length of the G-derivation of x. Base case: if $S \vdash x$, then $x = \varepsilon = a^0 b^0$.

Inductive step: Assume that if $S \vdash x$ then $x = a^n b^n$ for some $n \in \mathbb{N}$. Now suppose $S \vdash x$. This derivation must begin with the production $S \rightarrow aSb$, so it has the form $S \vdash aSb \vdash a^y$. But then $x = ayb$ for some $y \in \Sigma^*$ such that $S \vdash y$. Now, by the inductive hypothesis, $y = a^n b^n$ for some $n \in \mathbb{N}$, so $x = a(a^n b^n)b = a^{n+1} b^{n+1}$ for that n.

Here's another, more difficult example, taken from *Introduction to Automata Theory, Languages, and Computation* by Hopcroft and Ullman. Let $G = (\Sigma, N, P, S)$, where $\Sigma = \{a, b\}$, $N = \{S, A, B\}$, and $P = \{S \rightarrow aB, S \rightarrow bA, A \rightarrow a, A \rightarrow aS, A \rightarrow bAA, B \rightarrow b, B \rightarrow bS, B \rightarrow aBB\}$.

Claim: $L(G) = \{w \in \{a, b\}^+ \mid \#_a(w) = \#_b(w)\}$
Proof:

Inductive Hypothesis: For \(w \in \{a, b\}^+ \),

1. \(S \xrightarrow{*} w \) if and only if \(w \) contains an equal number of \(a \)'s and \(b \)'s.

2. \(A \xrightarrow{*} w \) if and only if \(w \) has one more \(a \) than it has \(b \)'s.

3. \(B \xrightarrow{*} w \) if and only if \(w \) has one more \(b \) than it has \(a \)'s.

We proceed by induction on \(|w| \). Base case: If \(|w| = 1 \), then either \(w = a \), or \(w = b \). Since no string of length 1 is derivable from \(S \), part 1 of the inductive hypotheses holds. Part 2 holds because the production \(A \rightarrow a \) is in \(P \), and because this production and \(B \rightarrow b \) are the only ones that don’t increase the length of the string to which they are applied (thus, \(a \) is the only string of length 1 derivable from \(A \)). Similarly, part 3 holds.

Inductive step. Assume that the inductive hypothesis holds for all \(w \) such that \(|w| \leq k - 1 \). We show that part 1 of the induction hypothesis holds for \(|w| = k \). (Showing parts 2 and 3 is similar and left to the reader.)

Suppose \(|w| = k \), and \(S \xrightarrow{*} w \). We must show that \(w \) contains an equal number of \(a \)'s and \(b \)'s. Now, the derivation must begin with either \(S \xrightarrow{*} aB \) or \(S \xrightarrow{*} bA \). In the former case, \(w \) has the form \(aw_1 \), where \(|w_1| = k - 1 \), and \(B \xrightarrow{*} w_1 \). By the inductive hypothesis, the number of \(b \)'s in \(w_1 \) is one more than the number of \(a \)'s, so \(w \) has an equal number of \(a \)'s and \(b \)'s. The latter case is analogous.

Now, suppose \(|w| = k \), and \(w \) has an equal number of \(a \)'s and \(b \)'s. We must show that \(w \in L(G) \). Either the first letter of \(w \) is an \(a \), or it is a \(b \). Assume \(w = aw_1 \). Then \(|w_1| = k - 1 \), and \(w_1 \) has one more \(b \) than it has \(a \)'s, so by the inductive hypothesis, \(B \xrightarrow{*} w_1 \). Thus, we have a derivation \(S \xrightarrow{*} aB \xrightarrow{*} aw_1 = w \). If, instead, the first letter of \(w \) is a \(b \), the argument is analogous.