CS 381 – HW2 Solutions

1. Prove that if \(L_1 \) and \(L_2 \) are regular languages, then so is: \(L_1 \setminus L_2 = \{ w \in L_1 \mid w \notin L_2 \} \)

Method:

We can prove this by constructing a DFA for \(L_1 \setminus L_2 \) using the DFAs for \(L_1 \) and \(L_2 \). Let's denote \(\text{DFA}_1 = (Q_1, \Sigma, q_1^{\text{start}}, \delta_1, \text{ACCEPT}_1) \) as the DFA for \(L_1 \) and \(\text{DFA}_2 = (Q_2, \Sigma, q_2^{\text{start}}, \delta_2, \text{ACCEPT}_2) \) as the DFA for \(L_2 \). We will call the DFA we construct \(\text{DFA}' = (Q, \Sigma, q'^{\text{start}}, \delta, \text{ACCEPT}) \).

Construction:

\(\text{DFA}' \) clearly needs the same language \(\Sigma \) as both \(\text{DFA}_1 \) and \(\text{DFA}_2 \). Our DFA will have a state for every pair of states \(q_1 \) in \(Q_1 \) and \(q_2 \) in \(Q_2 \): \(Q = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2 \} \). The start state \(q'^{\text{start}} \) will be the state pair \((q_1^{\text{start}}, q_2^{\text{start}}) \). Our transition function will separately map the initial \(\text{DFA}_1 \) state to the next \(\text{DFA}_1 \) state and the initial \(\text{DFA}_2 \) state to the next \(\text{DFA}_2 \) state according to the transition functions \(\delta_1 \) and \(\delta_2 \): \(\delta((q_1, q_2)) = (\delta_1(q_1), \delta_2(q_2)) \). The accept states for \(\text{DFA}' \) will be all states \((q_1, q_2) \) such that \(q_1 \) is an accept state of \(\text{DFA}_1 \) and \(q_2 \) is not an accept state of \(\text{DFA}_2 \): \(\text{ACCEPT} = \{(q_1, q_2) \mid q_1 \in \text{ACCEPT}_1, q_2 \notin \text{ACCEPT}_2 \} \).

Correctness:

\(\text{DFA}' \) starts with state \((q_1^{\text{start}}, q_2^{\text{start}}) \) and separately tracks the progress of its input through \(\text{DFA}_1 \) and \(\text{DFA}_2 \). We only accept an input string \(w \) if \(\text{DFA}_1 \) would have accepted \(w \). Thus \(w \in L_1 \). Also, we only accept \(w \) if \(\text{DFA}_2 \) would have rejected \(w \). Thus \(w \notin L_2 \). This is the exact description of \(L_1 \setminus L_2 \).

Another Method:

We can also prove the claim by noting that \(L_1 \setminus L_2 = L_1 \cap L_2^c \) where we’ve used \(L_2^c \) to denote the complement of \(L_2 \). We know that regular languages are closed under complement and intersection, so \(L_1 \setminus L_2 \) must be a regular language.

2. Given a DFA \(M = (Q, \Sigma, q_0, \delta, F) \) and \(p, q \in Q \), let \(L(M, p, q) = \{ w \mid q = \delta(p, w) \} \). Prove/refute each of the following claims.

Problem i:

For every \(M, p, q \) as above and every \(x, y \in \Sigma^* \), if \(z \in L(M, p, q) \) and \(y \in L(M, q, p) \) then \(xy \in L(M, p, p) \).

Solution i:

This fact can be proven rigorously using induction on the length of \(y \) and the definition of \(\delta \). A more conceptual proof follows: \(x \in L(M, p, q) \) means that \(x \) takes our machine from state \(p \) to state \(q \). \(y \in L(M, q, p) \) means that \(y \) takes our machine from state \(q \) to state \(p \). Let's now start in state \(p \) and input \(xy \). The machine first reads \(x \), which leaves us in state \(q \). The machine then reads \(y \), which takes us to state \(p \). Thus \(xy \in L(M, p, p) \).

Problem ii:
For every M, p, q as above and every $y, z \in \Sigma^*$, if $yz \in L(m, p, q)$ then there exist some $r \in Q$ such that for every $x \in L(M, r, r)$ and every $i \in \mathbb{N}$, $yx^i z \in L(M, p, q)$.

Problem ii:

First, let's define $r = \hat{\delta}(p, y)$. Observe that this means that $y \in L(M, p, r)$ and $z \in L(M, r, q)$. Now let's show that for this choice of r it is true that for every $x \in L(M, r, r)$ and every $i \in \mathbb{N}$ we have $yx^i z \in L(M, p, q)$. Note that for any specific i, $x \in L(M, r, r) \rightarrow x_i \in L(M, r, r)$ because we can inductively apply the result of part (i) to reduce the length of the concatenation. Let's now denote x^i as x', observing that $x' \in L(M, r, r)$. We then need to show $yx' z \in L(M, p, q)$. But this is true because y takes state p to state r, x' takes state r to state r, and z takes state r to state q. Thus applying $yx' z$ in sequence takes us from state p to state r. Hence: $yx' z = yx^i z \in L(M, p, q)$.

3. Recall that a language is regular if it is computable by some DFA.

Problem i:

Prove that any intersection of finitely many regular languages is a regular language.

Solution i:

We know that regular languages are closed under intersection. That is, for any two regular languages L_1 and L_2, we know that $L' = L_1 \cap L_2$ is regular. The problem of intersecting N regular languages $L_1 \cup L_2 \ldots L_N$ can be directly translated to the problem of intersecting $N - 1$ regular languages $(L' = L_1 \cup L_2) \cup L_3 \ldots L_N$ where we know L' is regular because regular languages are closed under intersection. We can repeat this translation $N - 1$ times for any finite N to produce a single regular language - the intersection of the N original languages. Thus the intersection of finitely many regular languages is regular.

Problem ii:

Prove that there exists a set W of regular languages so that the intersection of all languages in W is not regular.

Solution ii:

We can prove this constructively. First off, we know that irregular languages exist. Given an irregular language I we can construct I as an infinite intersection of regular languages as follows:

$$L^*_w \subseteq \Sigma^* = \Sigma^* - w$$

$$W = \{L_w \mid w \notin I\}$$

I claim first that every language in W is regular and second that the intersection of all languages in W leaves us with the irregular language I. Note that L_w is just the complement of the language w, which is finite and therefore regular. It follows that, because regular languages are closed under complements, L_w
is regular. Next, the intersection of all elements in W is defined as only those elements that are in every single language in W. The only elements in every language in W are the elements of I. Clearly the elements of I are in every language in W. Also, any element not $x \notin I$ is absent from some language in W, namely L_x. Thus we have constructed an irregular language from the intersection of an infinite number of regular languages.

Problem iii:
Find a set W of regular languages such that W is infinite and yet the intersection of all the languages in W is an infinite regular language.

Solution iii:
Many examples work. We can construct one example by defining our set W to be composed of individual languages L_w where L_w is some regular language (say 0^*) unioned with some unique string $w \notin 0^*$. The intersection of any two of these languages will clearly be only 0^*, a regular language (clearly the intersection of all elements of W is also 0^* because every element contains at least 0^*). There are an infinite number of such languages, because there are an infinite number of distinct $w \notin 0^*$. And ... that’s it.

4. Find a set W consisting of infinitely many languages over $\{0, 1\}$ so that:
(i) Each language in W is infinite.
(ii) Each language in W is regular.
(iii) $L_1 \neq L_2 \in W \rightarrow L_1 \cap L_2 = \emptyset$.

Solution:
Many examples work. We can construct one example by defining:

$$L_i = \{w \mid w = 0^i1^j : j \in \mathbb{Z}^+\}$$

$$W = \{L_i \mid i \in \mathbb{Z}^+\}$$

Clearly, each L_i is infinite because we can trail 0^i with any number of 1s we want. Also, each L_i is regular because it is the concatenation of two regular languages: $\{0^i\}$ is regular for any specific i, and we know 1^* to be regular. Finally, no two languages share any element because strings from different languages have a different number of leading 0s. Thus W satisfies properties (i), (ii), and (iii).

5. Construct a DFA, M, such that $L(M) = L(N)$ where N is the given NFA (see Figure 1).

6. Construct a NFA, M, over $\Sigma = \{1, 2, 3, 4, 5\}$ such that M has only five states and $L(M) = \{w = \sigma_1\sigma_2 \ldots \sigma_{|w|} : 1 \leq i < j \leq |w| \rightarrow \sigma_i \leq \sigma_j\}$. In other words, the numbers that are the letters in w appear in non-decreasing order (see Figure 2).
Figure 1: Observe that the given NFA described the language \(L = a^* b^* c^* \). The above DFA describes the same language. We have three states to keep track of the most recent symbol read, and in the case that we ever read a ‘smaller’ symbol we go to a non-accepting garbage state.

Figure 2: Observe that the language we desire is \(1^* 2^* 3^* 4^* 5^* \). This problem is very similar to the NFA given in Problem 5, and we can thus construct a similar NFA.