1. Which of the following statements holds for every three languages L_1, L_2, L_3?
 (i) $(L_1 \cap L_2) L_3 = L_1 L_3 \cap L_2 L_3$
 (ii) $L_1^* = L_1^* \cdot L_1^*$
 (iii) $(L_1 \cup L_2) \cap L_3 = L_1 \cup (L_2 \cap L_3)$

 Please prove your claims.

2. Prove that for every non-empty language L, $\varepsilon \in L$ iff $L \subseteq LL$

3. (i) Prove that if x and y are both strings over the same 1-letter alphabet, then $xy = yx$

 (ii) Find strings x, y over the alphabet $\{0,1\}$ such that $x \neq y$, both 0 and 1 appear in x (and y), and yet $xy = yx$.

 (iii) **BONUS:** Find a general (as general as you can) condition on strings such that if x, y satisfy this condition then $xy = xy$.

4. (i) Find an infinite set (W of Languages over $\{0,1\}$ so that the following two conditions hold (simultaneously):
a. Every intersection of finitely many members of W is non-empty

b. There is a subset of W whose intersection is empty

(ii) **BONUS:** Does there exist a set W that in addition to satisfying a & b above also satisfies:

 c. Every infinite subset of W has empty intersection

5. Find what are the languages computed by each of the following automata:

 ![Automaton Image](image)

 Explain your claims (there's no need to prove them).

6. Describe automata that compute each of the following languages:

 (i) \(L_{5,3} = \{ w \in \{0,1\}^* : |w| \text{ is divisible by either 3 or 5} \} \)
(ii) For a given string \(w \in \{0,1\}^* \), the language \(\{w\}^* \).