1. Suppose $L \subseteq \Sigma^*$, $L' \subseteq \Delta^*$, We need to find a function $\sigma : \Sigma^* \rightarrow \Delta^*$, such that for all $x \in \Sigma^*$:

 $x \in L \iff \sigma(x) \in L'$

Because L' is non-trivial, L' and L' complement are not empty. We can pick some $y_1 \in L'$ and $y_2 \notin L'$. And define σ in this way: for all $x \in \Sigma^*$

 $x \in L, \sigma(x) = y_1 \in L'$

 $x \notin L, \sigma(x) = y_2 \notin L'$

Now we only need to show that σ is total and computable. Since L is recursive, there exists some total Turing machine T computing L. Now we can construct a total Turing machine T' computing σ in this way: on input x, T' simulate T on input x, if T accepts x, T' accepts and writes y_1 on its tape. Or if T rejects x, T' rejects and writes y_2 on its tape. Thus σ is total and computable, which completes the proof.

2. Find a pair of languages L, L' for which $L \leq_m L'$ but $L' \not\leq_m L$.

 Solution 2: Take a language $L = \phi \in R$ and $L' \in R$ but L' non-trivial. By problem 1 we know that $L \leq_m L'$, however $L' \not\leq_m L$ because L is trivial.

3. The claim is False. Prove by counterexample: Let $A = \text{HP}$, $B = \text{FIN}$, as defined in Kozen p.241. We have $A \leq_m B$ since $\text{HP} \leq_m \text{FIN}$. Now if the statement is true, then $\sim B \leq_m \sim A$ or equivalently $\sim \text{FIN} \leq_m \sim \text{HP}$. But $\sim \text{FIN}$ is harder than $\sim \text{HP}$ which is in turn harder than HP. Thus we reach a contradiction.