Lecture 4

Game Components
So You Want to Make a Game?

- Will assume you have a *design document*
 - Focus of next week and a half…
 - Building off the ideas of previous lecture

- But now you want to start building it
 - Need to assign tasks to the team members
 - Helps to break game into *components*
 - Each component being a logical unit of work.
Traditional Way to Break Up a Game

- **Game Engine**
 - Software, created primarily by programmers

- **Rules and Mechanics**
 - Created by the designers, with programmer input

- **User Interface**
 - Coordinated with programmer/artist/HCI specialist

- **Content and Challenges**
 - Created primarily by designers
Features of Game Engines

- Power the **graphics** and **sound**
 - 3D rendering or 2D sprites

- Power the character and strategic **AI**
 - Typically custom designed for the game

- Power the **physics** interactions
 - Must support collisions at a bare minimum

- Describe the **systems**
 - Space of possibilities in game world
Commercial Game Engines

- Libraries that take care of technical tasks
 - But probably need some specialized code
 - Game studios buy *source code licenses*

- Is XNA a game engine?
 - No AI or physics support at all
 - But external libraries exist (e.g. Box2D)

- Bare bones engine: *graphics + physics*
Game Engines: Graphics

- Minimum requirements:
 - Low level instructions for drawing
 - API to import artistic assets
 - Routines for manipulating images

- Two standard 3D graphics APIs
 - **OpenGL**: Unix, Linux, Macintosh
 - **Direct3D**: Windows

- For this class, our graphics engine is XNA
 - Supports Direct 3D, but will only use 2D
Game Engines: Physics

- Defines physical attributes of the world
 - There is a gravitational force
 - Objects may have friction
 - Ways in which light can reflect

- Does **not** define precise values or effects
 - The direction or value of gravity
 - Friction constants for each object
 - Specific lighting for each material
Game Engines: Systems

- Physics is an example of a game **system**
 - Specifies the *space of possibilities* for a game
 - But not the *specific parameters* of elements

- Extra code that you add to the engine
 - Write functions for the possibilities
 - But do not code values or when called

- Separates programmer from **gameplay designer**
 - Programmer creates the system
 - Gameplay designer fills in parameters
Systems: Super Mario Bros.

• **Levels**
 - Fixed height scrolling maps
 - Populated by blocks and enemies

• **Enemies**
 - Affected by stomping or bumping
 - Different movement/AI schemes
 - Spawn projectiles or other enemies

• **Blocks**
 - Can be stepped on safely
 - Can be bumped from below

• Mario (and Luigi) can be small, big, or fiery
Traditional RPG Analogy: Engines

- Highest level decisions in the rulebooks
 - Dice mechanisms for entire system
 - Explanation of action types
 - Overview of spell, combat system
 - Statistical requirements for game entities

- SRD: System Reference Document
 - Feature of 3.x D&D (discontinued)
 - Allows creation of compatible games

Parts of a Game
Modern digital games borrow a lot from traditional RPGs.

- Highest level decisions in the rulebooks
- Dice mechanisms for entire system
- Explanation of action types
- Overview of spell, combat system
- Statistical requirements for game entities

SRD: System Reference Document
- Feature of 3.x D&D (discontinued)
- Allows creation of compatible games
Characteristics of an Engine

• Broad, adaptable, and extensible
 • **Encodes** all *non-mutable* design decisions
 • **Parameters** for all *mutable* design decisions

• Outlines gameplay possibilities
 • Cannot be built independent of design
 • But only needs highest level information
 • **Gameplay specification** is sufficient
Data-Driven Design

• No code outside engine; all else is data
 • Purpose of separating system from parameters
 • Create game content with level editors

• Examples:
 • Art, music in industry-standard file formats
 • Object data in XML or other data file formats
 • Character behavior specified through scripts

• Major focus for alpha release
Rules & Mechanics

• Fills in the values for the system
 • Parameters (e.g. gravity, damage amounts, etc.)
 • Types of player abilities/verbs
 • Types of world interactions
 • Types of obstacles/challenges

• But does not include specific challenges
 • Just the list all challenges that could exist
 • Contents of the pallet for level editor
Rules: Super Mario Bros.

- **Enemies**
 - Goombas die when stomped
 - Turtles become shells when stomped/bumped
 - Spinys damage Mario when stomped
 - Piranha Plants aim fireballs at Mario

- **Environment**
 - Question block yields coins, a power-up, or star
 - Mushroom makes Mario small
 - Fire flower makes Mario big and fiery
Traditional RPG Analogy: Mechanics

- Engine + mechanics = core rulebooks
 - Material tailored to genre, setting
 - Less information than an adventure module
 - But enough to create your own adventures

- Vary the mechanics by genre
 - **D&D**: high fantasy
 - **Star Wars**: space opera
 - **Top Secret**: modern spy thriller
Game AI: Where Does it Go?

• Game AI is traditionally placed in **mechanics**
 • Characters need rules to make right choices
 • Tailor AI to give characters personalities

• But it is implemented by programmer
 • Complicated search algorithms
 • Algorithms should be in **game engine**

• Holy Grail: “AI Photoshop” for designers
 • Hides all of the hard algorithms
Interfaces

- Interface specifies
 - How player does things (player-to-computer)
 - How player gets feedback (computer-to-player)

- More than engine+mechanics
 - They just describe what the player can do
 - Do not specify how it is done

- Bad interfaces can kill a game
Interface: *Dead Space*
Traditional RPG Analogy: Interface

- Interface includes:
 - Character sheets
 - Pencils
 - Maps
 - Dice
 - Player voices

- Alternate interfaces for D&D
 - LARPing
 - Play-by-mail
Interface Tips

- Must consider input devices in design
 - For PC, typically mouse and keyboard
 - Game controllers have different “feel”

- Consider depth and width of interface
 - Details are best processed at the center of vision
 - Peripheral vision mostly detects motion

- Strive for “invisible” interface (metaphorically)
 - Familiarity is better than innovation
Content and Challenges

- **Content** is *everything else*

- **Gameplay** content define the actual game
 - Goals and victory conditions
 - Missions and quests
 - Interactive story choices

- **Non-gameplay** content affects player experience
 - Graphics and cut scenes
 - Sound effects and background music
 - Non-interactive story
Traditional RPG Analogy: Content

- **Content is what creates an adventure**
 - Could include adventure modules
 - But also includes the DM’s imagination
 - “Dealing with the exceptions” 90% of time
 - DM must quickly adapt to the players

- **Ability to improvise provides another lesson:**
 - Content should be easy to change as needed
 - Needs well-designed **engine+mechanics+interface**
Why the division?

- They are not developed sequentially
 - Content may require changes to game engine
 - Interface is changing until the very end

- Intended to organize your design
 - **Engine**: decisions to be made early, hard-code
 - **Mechanics**: mutable design decisions
 - **Interface**: how to shape the user experience
 - **Content**: specific gameplay and level-design
Milestones Suggestions

<table>
<thead>
<tr>
<th>Nondigital</th>
<th>Gameplay</th>
<th>Technical</th>
<th>Alpha</th>
<th>Beta</th>
<th>Release</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-Engine Tech</td>
<td>Completed Game Engine</td>
<td>Mechanics (Design)</td>
<td>Mechanics (Implementation)</td>
<td>Interface (Functional Mock-up)</td>
</tr>
</tbody>
</table>

Design Elements

- Pre-Engine Tech
- Completed Game Engine
- Mechanics (Design)
- Mechanics (Implementation)
- Interface (Functional Mock-up)
- Interface (Polishing)
- Content
Summary

- Game is divided into four components
 - Should keep each in mind during design
 - Key for distributing work in your group

- But they are all interconnected
 - System/engine limits your possible mechanics
 - Content is limited by the type of mechanics

- Once again: design is iterative