Recursion: N-input AND gate

A 2N-input AND gate is built from a pair of N-input AND gates and a single 2-input AND
define AndN(int N)(node[N] in; node out)
{
 [N=1 -> out = in[0];]
 [N=2 -> And2()(in[0], in[1], out);]
 [N>2 ->
 int N2 = N/2;
 And2 a2(,,out);
 AndN(N2)(in[0..N2-1], a2.a);
 AndN(N-N2)(in[N2..N-1], a2.b);
]
}

CAST conditions
(cases for both N=1 and N=2 allow use of AndN(X) even if X is not a power of 2)
What if N is not a power of 2?

Example:
\[\text{AndN}(3)(...) \]

Note \(N2 = \frac{3}{2} = 1 \) and \(N-N2 = 3-1 = 2 \)

So this instantiates
\[\text{AndN}(1)(...) \text{ and } \text{AndN}(2)(...) \]
A More Sophisticated Example

An L-bit decoder with N outputs ...

Inputs:
 node[L] in L-bit input
 node enb output is 0 unless enb is TRUE

Outputs:
 node[N] out N-bit output:
 out[i] is set iff i = value of in
 => L = log(N)

Note this makes no sense for (L=0, N=1)!

define DLN(int L; int N)(node[L] in; node enb; node[N] out)
{ ... }
Recursive Decoder Definition

\[L + \frac{1}{2N} = \text{enb} \]

\[L + 1 \quad \frac{L+1}{2N} \quad \text{enb} \]

\[\frac{1}{2} \quad \frac{L}{N} \quad \frac{L}{N} \quad \text{enb} \]

\[\text{in} \quad \text{out} \quad \text{in} \quad \text{out} \quad \text{enb} \]

\[\text{Z} \]
Decoder Definition - Basis

\[
\frac{1}{2} = \text{in}[0] \rightarrow \text{out}[1] \\
\text{enb} \rightarrow \text{out}[0] \\
\text{in}[0] \rightarrow \text{out}[1] \\
\text{enb} \rightarrow \text{out}[0]
\]
Expressing this in CAST

This assumes N is exactly \(2^{**}L\) ...

define DLN(int L; int N)(node[L] in; node enb; node[N] out)
{
 [L=1 ->
 node _in0; Inv()(in[0], _in0);
 And2()(enb, _in0, out[0]);
 And2()(enb, in0, out[1]);
]
 [L>1 ->
 DLN(1,2) sel(in[L-1], enb,);
 DLN(L-1,N/2)(in[0..L-2], sel.out[0], out[0..N/2-1]);
 DLN(L-1,N/2)(in[0..L-2], sel.out[1], out[N/2..N-1]);
]
}
Use recursion in CAST to describe large circuits if they can be defined by “divide-and-conquer” or as tree-like structures.

Examples:

N-input And, OR, ...
N-input Mux, N-output decoder
N-bit Carry-lookahead adder, incrementer, ...
Fast N-bit zero or equality test
N-bit shift register with variable shift amount

... and a host of others!