Assembly Language And Machine Code

C Statement:

 int foo; foo = 15; foo = foo + 7;

MIPS Assembly Language:

 ori $1,$0,15 # set foo to 15
 addiu $1,$1,7 # add 7 to foo

(register 1 holds the value of foo)

MIPS Machine Instructions:

 00110100000000010000000000001111
 00100100001000010000100000000000001111
A Simple Computer

fetch ins at pc
decode
update pc
execute

Memory

pc

function units

control

r0 0
r1 22
rN

00110100000000010000000000001111
00100100001000010000000000000111

...
Number Representation

Decimal: base 10, digits: ’0’, ’1’, ..., ’9’

\[(683)_{10} = 6 \cdot 10^2 + 8 \cdot 10^1 + 3 \cdot 10^0\]

Binary: base 2, digits: ’0’, ’1’

\[(1101)_{2} = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0\]
\[= 8 + 4 + 0 + 1\]
\[= (13)_{10}\]

Hexadecimal: base 16, digits: ’0’ .. ’9’, ’a’ .. ’f’

’a’ = 10, ’b’ = 11, ’c’ = 12, ’d’ = 13, ’e’ = 14, ’f’ = 15

\[(a6)_{16} = 10 \cdot 16^1 + 6 \cdot 16^0 = (166)_{10}\]

Often write 0xa6 instead of \((a6)_{16}\).
A Useful Trick: Converting between hexadecimal (hex) and binary.

\[0xe3f8 = 14 \cdot 16^3 + 3 \cdot 16^2 + 15 \cdot 16^1 + 8 \cdot 16^0 \]
\[= 14 \cdot (2^4)^3 + 3 \cdot (2^4)^2 + 15 \cdot (2^4)^1 + 8 \cdot (2^4)^0 \]
\[= (1110)_2 \cdot (2^4)^3 + (0011)_2 \cdot (2^4)^2 + (1111)_2 \cdot (2^4)^1 + (1000)_2 \cdot (2^4)^0 \]
\[= (1110 \ 0011 \ 1111 \ 1000)_2 \]

1 hex digit = 4 bits
Negative Numbers

Various representations possible for signed binary arithmetic.

Sign-Magnitude: reserve left-most bit for the sign
+ Easy to negate a number
 - Multiple zeros
 - Arithmetic is more complicated

Example: 4-bit numbers
• \((+5)_{10}\) is given by 0 101
• \((-5)_{10}\) is given by 1 101
Negative Numbers

2’s complement
• Flip all the bits and add 1
+ No wasted bits
+ Arithmetic works out
 - Asymmetric range for positive and negative numbers

Example: 4-bit numbers
• \((+5)_{10}\) is given by \(0101\)
• Flip bits: \(1010\)
• Add 1: \(1011\)
Why 2’s complement?

Let b be the integer we’re trying to negate. (N-bits)

- **Flip bits** \equiv subtract b from $\underbrace{111 \cdots 1}_{N \text{ 1s}}$

 \[
 \begin{array}{cccc}
 1 & 1 & 1 & 1 \\
 - & 0 & 1 & 0 \\
 \hline
 1 & 0 & 1 & 0
 \end{array}
 \]

 $\underbrace{111 \cdots 1}_{N \text{ 1s}} = 2^N - 1$

- **Add 1**

 \[
 \begin{array}{ccccccc}
 1 & 0 & 0 & 0 & 0 & 0 \\
 - & 0 & 0 & 0 & 1 \\
 \hline
 1 & 1 & 1 & 1 & 1
 \end{array}
 \]

 result $= 2^N - b$
Why 2’s complement?

For 2’s complement: $-b$ is represented by $2^N - b$.

... which is $-b$ modulo 2^N.

\Rightarrow we can use the same computation structure to add positive and negative numbers if we use modulo 2^N arithmetic.
Sign Extension

How do I convert an 8-bit number into a 16-bit number?

- If the number is non-negative, left-most bit is 0
 ⇒ add 0s to the left

- If the number is \(-b\), then it corresponds to \(2^8 - b\).

 \[2^{16} - b = (2^8 - b) + (2^{16} - 2^8) \]

 ⇒ add 1s to the left

In both cases, replicate left-most bit

Known as “sign-extension”
Instruction Set Architecture

ISA: operands, data types, operations, encoding
MIPS Instruction Set Architecture

Basic features:

- Load/store architecture
 - Data must be in registers to be operated on
 - Keeps hardware simple
 - Memory operations only transfer data between registers and memory
- Emphasis on efficient implementation
- Very simple: basic operations rather than support for any specific language construct
MIPS Data Representation

Integer data types:
- Byte: 8 bits
- Half-words: 16 bits
- Words: 32 bits
- Double-words: 64 bits (not in basic MIPS 1)

MIPS supports operations on signed and unsigned data types.

Converting a byte to a word? Sign-extend!
MIPS Instruction Types

- **Arithmetic/Logical**
 - three operands: result + two sources
 - operands: registers, 16-bit immediates
 - signed + unsigned operations

- **Memory access**
 - load/store between registers and memory
 - half-word and byte operations

- **Control flow**
 - conditional branches, fixed offsets and pc-relative
Data Storage

- 32 32-bit registers, register 0 is always zero.
- 2^{32} bytes of memory
- hi, lo: special 32-bit registers for multiply/divide
- pc, program counter
- 16 floating-point registers

Memory access:
- Byte addressing: can address individual bytes of memory
- How do bytes map into words?
Byte Ordering And Alignment

Data Movement

Load/store architecture

- Read data from memory: “load”
- Write data to memory: “store”

Load:

- Normally overwrites entire register
- Loading bytes/half-words
 - unsigned: zero-extend
 - signed: sign-extend

Store: writes bottom byte/bottom half-word/word of register to memory.
Addressing Modes For Data Movement

How do we specify an address in memory?
 ● Instructions compute effective address (EA)

MIPS: One addressing mode for loads/stores
 ● register indirect with immediate offset
 ● EA = register + signed immediate

Example:
 lh $5, 8($29)
 lw $7, -12($29)
 lbu $7, 1($30)

Requires aligned addresses!
Addressing Modes

Other architectures have more than one way to specify EA.

- $EA = \text{signed immediate}$
- $EA = \text{register}$
- $EA = \text{register} + k \times \text{register}$ ($k=1,2,4,8$)
- $EA = \text{register} + k \times \text{register} + \text{signed immediate}$

MIPS favors simplicity \Rightarrow fast hardware
MIPS Load/Store Instructions

lb rt, imm(rs) # load byte (signed)
lbu rt, imm(rs) # load byte (unsigned)

lh rt, imm(rs) # load half-word (signed)
lhu rt, imm(rs) # load half-word (unsigned)

lw rt, imm(rs) # load word

sb rt, imm(rs) # store byte
sh rt, imm(rs) # store half-word
sw rt, imm(rs) # store word

<table>
<thead>
<tr>
<th>op</th>
<th>rs</th>
<th>rt</th>
<th>imm</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 bits</td>
<td>5 bits</td>
<td>5 bits</td>
<td>16 bits</td>
</tr>
</tbody>
</table>
MIPS Load/Store Instructions

C Code

```c
foo = x[3]; x[4] = foo + 1;
```

Assembly

```assembly
lw $16, 12($17) # reg 16 contains foo, reg 17
                 # contains the address of x
addiu $8, $16, 1 # add 1 to foo
sw $8, 16($17)  # store into x[4]
```
Integer Arithmetic Operations

- **Constants**
 - register zero is always zero
 - immediates are 16-bits wide
- **Signed + unsigned operations**
- **Logical operations**
 - bitwise operations on operands
 - always unsigned
Integer Arithmetic Operations

add rd, rs, rt # rd = rs + rt
addi rt, rs, imm # rt = rs + s_ext(imm)
addiu rt, rs, imm # rt = rs + s_ext(imm)
addu rd, rs, rt # rd = rs + rt
slt rd, rs, rt # rd = (rs <_s rt)
slti rt, rs, imm # rt = (rs <_s s_ext(imm))
sltiu rt, rs, imm # rt = (rs < s_ext(imm))
sltu rd, rs, rt # rd = (rs < rt)
sub rd, rs, rt # rd = rs - rt
subu rd, rs, rt # rd = rs - rt

<table>
<thead>
<tr>
<th>op</th>
<th>rs</th>
<th>rt</th>
<th>rd</th>
<th>shamt</th>
<th>funct</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 bits</td>
<td>5 bits</td>
<td>5 bits</td>
<td>5 bits</td>
<td>5 bits</td>
<td>6 bits</td>
</tr>
</tbody>
</table>