Today slide credits

• Best algorithms book:
 – Slides c/o Kevin Wayne
 • With slight changes
Two basic algorithms

• Exhaustive search: try everything
 – Always works. Always slow.
• Greedy method: act locally
 – Sometimes works. Always fast.
• Today: a triumph of greed
 – Plus a nice induction proof
• Motivation: pirate grammar
Pirate grammar

• What is a pirate’s favorite sentence?

Problem: shortest paths

- Underlying problem for examples
 - Not completely obvious
 - Pirate favorite sentence?
 - Photoshopping images??

- General version: given a graph with edge weights, a starting node s and a target t, find shortest path from s to t

- Claim: this problem is impossible
 - Proof?
Airfare example
(for those who are anti-pirate)

• Nodes are cities, edges are direct flights, weights are airfare

• What is the cheapest way to get from Ithaca to Chicago?
 – Presumably you can charter a plane
 • It’s unlikely this is the cheapest…
Cycles

• Consider a cycle A-B-C-A
 – Where the weight sum is negative
• Go around this multiple times
 – Always makes an even shorter path!
• Does the presence of a negative weight cycle imply no shortest path?
 – Almost, but not quite
• Let’s assume positive edge weights
 – Can detect negative cycles
Key property

• Suppose the shortest path from s to t goes via v
 – i.e., s \cdots v \cdots t

 – Otherwise, we would take that “shortcut” instead, and create an even shorter path
 – Parse this statement carefully!

• When considering s-v-t paths, we only need the shortest s-v path
 – Don’t need to try everything!
Idea: Dijkstra (1959)

- Like expanding a ball (air budget)
 – Actually a variant of BFS!

Figure 4.7 A snapshot of the execution of Dijkstra’s Algorithm. The next node that will be added to the set S is x, due to the path through u.
Shortest path example

Cost of path $s-2-3-5-t$
$= 9 + 23 + 2 + 16$
$= 48.$
On each recursive call we will have an explored set S with an invariant:

- For each node u in S we hold the **shortest** path from s to u, write this as $d(u)$
 - Both the distance and the actual path
 - Easiest to just think about the distance $d(u)$
 - Can easily extend this to add path
- Add an unexplored node v to S
 - But, which one to choose?
 - Adjacent to S, so we add just one edge
Choice of edge for a node

• The new node v can be adjacent to several nodes in S
 – v is at the “fringe” of the set S
 – If we choose to add v, we need to pick the right node in S to connect it to

$$d(u_1) + w_1 \quad \text{versus} \quad d(u_2) + w_2$$
Choice of node

• If we pick \(v\) to add to \(S\), we will connect it to the \(u\) in \(S\) that minimizes \(d(u) + \) the length of the \((u,v)\) edge
 – Call this shortest path length \(\pi(v)\)
 – But can we pick an arbitrary \(v\) to add?

• Can prove that this would break our invariant about \(S\)!

• Need to pick \(v\) with smallest \(\pi(v)\), then add it to \(S\) with \(d(v) = \pi(v)\)
Algorithm

- Start with \(S=\{s\} \), all other nodes in \(Q \)
 - \(d(s) = 0 \), else \(d(v) = \infty \) (i.e. upper bound)
- Pick \(v \) on fringe of \(S \) that minimizes \(\pi(v) \)
 - I.e., a \(v \) in \(Q \) with a neighbor in \(S \)
- On recursive call, we will have
 - \(d(v) = \pi(v) \)
 - \(v \) is in \(S \), and no longer in \(Q \)
- Done when we pick target \(t \)
 - Computes more than shortest \(s-t \) path!
Dijkstra's Shortest Path Algorithm

Find shortest path from s to t.
Blue arrows are shortest path to a node within S.
Green arrows are how we would add for each vertex.
Dijkstra's Shortest Path Algorithm

\[S = \{ s \} \]
\[Q = \{ 2, 3, 4, 5, 6, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s \} \]
\[Q = \{ 2, 3, 4, 5, 6, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s \} \]
\[Q = \{ 2, 3, 4, 5, 6, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2 \} \]
\[Q = \{ 3, 4, 5, 6, 7, \top \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2 \} \]
\[Q = \{ 3, 4, 5, 6, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2 \} \]
\[Q = \{ 3, 4, 5, 6, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 6 \} \]
\[Q = \{ 3, 4, 5, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 6 \} \]
\[Q = \{ 3, 4, 5, 7, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 6, 7 \} \]
\[Q = \{ 3, 4, 5, t \} \]
Dijkstra's Shortest Path Algorithm

$S = \{ \text{s, 2, 6, 7} \}$

$Q = \{ \text{3, 4, 5, t} \}$
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 6, 7 \} \]
\[Q = \{ 4, 5, t \} \]
Dijkstra's Shortest Path Algorithm

S = \{ s, 2, 3, 6, 7 \}
Q = \{ 4, 5, t \}
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 5, 6, 7 \} \]
\[Q = \{ 4, t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 5, 6, 7 \} \]
\[Q = \{ 4, t \} \]
Dijkstra's Shortest Path Algorithm

$S = \{ s, 2, 3, 4, 5, 6, 7 \}$

$Q = \{ t \}$
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 4, 5, 6, 7 \} \]
\[Q = \{ t \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 4, 5, 6, 7, t \} \]
\[Q = \{ \} \]
Dijkstra's Shortest Path Algorithm

\[S = \{ s, 2, 3, 4, 5, 6, 7, t \} \]
\[Q = \{ \} \]

Note: we've built a tree that “spans” the graph!
Correctness proof (sketch)

• Induction on the size of the graph
• $P[n] = \text{"algorithm works for all graphs with n nodes"}$
Applications and extensions

• Pirate’s favorite sentence?
 – Is there a challenge in just using the probabilities as edge lengths?
 – How do we solve it, legitimately?

• All-pairs shortest paths
 – Easy solution: run from each source!
 – In practice, this is often best
 • But there are better asymptotic solutions