1 Recurrence Relations: Bottom Up

For each of the characteristic equations:

1. Find the corresponding recurrence equation.
2. How many boundary conditions are necessary for a complete solution to \(f(n) \)?
3. Show that the roots of the characteristic equations raised to the \(n^{th} \) power are solutions of the recurrence equation. I.e \(f(n) = r^n \), where \(r \) is a root of the corresponding characteristic equation, satisfies the recurrence equation.

The characteristic equations:

1.1 \(x - 2 = 0 \)
 1. \(f(n) = 2f(n - 1) \)
 2. Need 1 boundary condition.
 3. The roots are: 2.

\[
2^n = 2(2)^{n-1}
\]

1.2 \(x^2 + 2x - 15 = 0 \)
 1. \(f(n) = -2f(n - 1) + 15f(n - 2) \)
 2. Need 2 boundary conditions.
 3. The roots are: 3 and -5.

\[
(-5)^n = -2(-5)^{n-1} + 15(-5)^{n-2} \\
25 = 10 + 15 \tag{1}
\]

And:

\[
(3)^n = -2(3)^{n-1} + 15(3)^{n-2} \\
9 = -6 + 15 \tag{2}
\]
1.3 \[8x^3 - 8x^2 + 4x - 1 = 0\]

1. \[8f(n) = 8f(n-1) - 4f(n-2) + f(n-3)\]

2. Need 3 boundary conditions.

3. The roots are: \(\frac{1}{2}, \frac{1 + \sqrt{3}}{4}, \frac{1 - \sqrt{3}}{4}\).

\[
8 \left(\frac{1}{2}\right)^n = 8 \left(\frac{1}{2}\right)^{-1} - 4 \left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{2}\right)^{-3} \\
\frac{8}{2^3} = \frac{8}{2^2} - \frac{4}{2} + 1 \\
1 = 2 - 2 + 1
\]

\[
8 \left(\frac{1 + \sqrt{3}}{4}\right)^n = 8 \left(\frac{1 + \sqrt{3}}{4}\right)^{-1} - 4 \left(\frac{1 + \sqrt{3}}{4}\right)^{-2} + \left(\frac{1 + \sqrt{3}}{4}\right)^{-3} \\
8 \left(\frac{1 + \sqrt{3}}{4}\right)^2 = \left(\frac{1 + \sqrt{3}}{4}\right)^2 - \sqrt{3} \\
\frac{1 + 3\sqrt{3} - 9 - 3\sqrt{3}}{8} = \frac{1 + 2\sqrt{3} - 3}{2} - \sqrt{3} \\
\frac{8}{8} = \frac{2 + 2\sqrt{3}}{2} - \sqrt{3} = 1
\]

In a very similar way the root \(\left(\frac{1 - \sqrt{3}}{4}\right)^n\) can be shown to satisfy the recurrence.

2 Recurrence Relation: Top Down

For each of the recurrence equations:

1. Find the characteristic equation and its roots.

2. The linearly independent set of basis functions.

3. The final closed form solution of \(f(n)\)

4. Show for \(n = 3\) and \(n = 4\), the closed form solution and the recurrence equations agree.

The recurrence relations:

2.1 First Eq

Given, \(f(n) = 5f(n-1) - 6f(n-2)\) with boundary conditions \(f(0) = 0\) and \(f(1) = 1\).

1. The characteristic eq is: \(x^2 - 5x + 6 = 0\), with roots \(r_1 = 3\) and \(r_2 = 2\).

2. The linearly independent basis functions are \(3^n\) and \(2^n\).
3. The closed form solution must be of the form \(f(n) = a3^n + b2^n \), where \(a \) and \(b \) are determined by the boundary conditions:

\[
\begin{align*}
 f(0) &= a(3)^0 + b(2)^0 = a + b = 0 \\
 f(1) &= a(3)^1 + b(2)^1 = 3a + 2b = 1
\end{align*}
\]

Hence, \(a = 1 \) and \(b = -1 \) \(\implies \) \(f(n) = 3^n - 2^n \)

4. By recurrence:

\[
\begin{align*}
 f(2) &= 5, \\
 f(3) &= 5 \cdot 5 - 6 = 19, \\
 f(4) &= 5 \cdot 19 - 6 \cdot 5 = 65
\end{align*}
\]

By formula:

\[
\begin{align*}
 f(3) &= 3^3 - 2^3 = 19 \text{ and } f(4) = 3^4 - 2^4 = 65
\end{align*}
\]

2.2 Second Eq

Given, \(f(n) = 6f(n-1) - 12f(n-2) + 8f(n-3) \) with boundary conditions \(f(0) = 1, f(1) = 6, \) and \(f(2) = 32 \).

1. The characteristic eq is: \(x^3 - 6x^2 + 12x - 8 = 0 \), with roots \(r_1 = 2 \) and \(r_2 = 2 \) and \(r_3 = 2 \).

2. The linearly independent basis functions are \(2^n, n2^n \) and \(n^22^n \).

3. The closed form solution must be of the form \(f(n) = a2^n + bn2^n + cn^22^n \), where \(a, b, \) and \(c \) are determined by the boundary conditions:

\[
\begin{align*}
 f(0) &= a(2)^0 + b(0)(2^0) + c(0)^22^0 = a = 1 \\
 f(1) &= a(2)^1 + b(1)(2^1) + c(1)^22^1 = 2a + 2b + 2c = 6 \\
 f(2) &= a(2)^2 + b(2)(2^2) + c(2)^22^2 = 4a + 8b + 16c = 32
\end{align*}
\]

Hence, \(a = 1, b = \frac{1}{2}, \) and \(c = \frac{3}{2} \) \(\implies \) \(f(n) = 2^n + \frac{1}{2}n2^n + \frac{3}{2}n^22^n \)

4. By recurrence:

\[
\begin{align*}
 f(3) &= 6 \cdot 32 - 12 \cdot 6 + 8 \cdot 1 = 128, \\
 f(4) &= 6 \cdot 128 - 12 \cdot 32 + 8 \cdot 6 = 432
\end{align*}
\]

By formula: \(f(3) = 2^3 + \frac{3}{2}2^3 + \frac{27}{2}2^3 = 128 \) and \(f(4) = 2^4 + \frac{4}{2}2^4 + \frac{48}{2}2^4 = 432 \)

3 Bijective Proof

Here we provide the outline of a proof. You should rewrite all the provided steps and fill in the missing steps marked by ???. For definitions of 1-1(injective), onto(surjective), and isomorphism(bijection) please reference wikipedia.

Theorem 1. Given sets \(S \) and \(T \), and a mapping \(f : S \to T \) that is onto and a mapping \(g : T \to S \) is onto, prove whether or not \(S \) and \(T \) are isomorphic.

This is not a proof, but to guess whether or not \(S \) and \(T \) are isomorphic, we can consider their cardinality. If \(f \) is an onto mapping from \(S \) to \(T \):

\[
|S| \geq |T|
\]
And similarly, if \(g \) is an onto mapping from \(T \) to \(S \):

\[|S| \leq |T| \]

Which implies:

\[|S| = |T| \]

Hence, if \(S \) and \(T \) are finite sets they have the same cardinality and would be isomorphic. But, we need to construct a rigorous proof to handle finite and infinite sets.

Proof. The proof idea: To prove \(S \) and \(T \) are isomorphic, we will use mappings \(f \) and \(g \) to construct a 1−1 mapping from \(S \) to \(T \) and a 1−1 mapping from \(T \) to \(S \). From class, if we can show both 1−1 mappings exist, this implies there is a bijection between \(S \) and \(T \). Hence, \(S \) and \(T \) are isomorphic.

The proof:

We now construct a 1−1 mapping from \(T \) to \(S \) using \(f \):

Since, \(f \) maps \(S \) onto \(T \), for every \(t \in T \) there exists a non-empty set \(s_t \) such that for all \(s \in s_t \) \(f(s) = t \). I.e, \(s_t \) is all elements of \(S \) that map to \(t \in T \). Note that because \(s_t \) is non-empty, we can pick one element from every \(s_t \). Now, for every \(t \in T \), we create the set \(s'_t \), by picking exactly one element from \(s_t \).

Note, that because \(f \) was a mapping, no element of \(S \) mapped to. We use If we consider the mapping from \(f' \), \(T \) to \(S \), where \(f'(t) = s \in s'_t \), we have a 1-1 mapping from \(T \) to \(S \). By construction,

We now construct a 1−1 mapping from \(S \) to \(T \) using \(g \):

In exactly the same manner, but this time using \(g \), sets \(t'_s \) of cardinality 1 for every \(t \in T \), can be constructed. The sets \(t'_s \) can then be used for a mapping \(g'(s) = t \in t'_s \). This \(g' \) mapping is a 1-1 mapping from \(S \) to \(T \).

Hence, from class, as there exists a 1-1 mapping from \(S \) to \(T \) and from \(T \) to \(S \), there exists a bijection from \(S \) to \(T \). Hence, \(S \) and \(T \) are isomorphic.

4 **Mapping Examples**

Consider the set up in the previous problem where \(f \) is an onto mapping from \(S \) to \(T \). In the previous problem we show \(S \) and \(T \) are isomorphic.

1. Give an example of two sets \(S \) and \(T \) and mapping \(f \), where the fact \(S \) and \(T \) are isomorphic implies that \(f \) is also 1−1.

 Example 2. We have that \(S \) and \(T \) are isomorphic, if we add the constraint that \(S \) and \(T \) have finite cardinality, then any onto mapping from \(S \) to \(T \) must also be 1-1. The easiest way to see this is to draw a picture and realize that there are exactly the same number of elements in \(S \) and \(T \) (follows from finite cardinality). Hence, any onto mapping must have mapped each \(s \in S \) to a unique element of \(T \), which is 1-1.

2. Give an example of two sets \(S \) and \(T \) and mapping \(f \), where the fact \(S \) and \(T \) are isomorphic does not implies that \(f \) is also 1−1.

 Example 3. The reason we had to do a careful proof on the previous problem, was the case in which \(S \) and \(T \) are infinite. If \(S \) was the set of natural numbers and \(T \) was the set of real numbers both have cardinality \(|S| = |T| = \infty \), but they are not isomorphic. In fact there does not exist an onto mapping from the natural numbers to the real numbers.

Now, if we consider \(S \) and \(T \) to be the natural numbers, \(S \) and \(T \) are indeed isomorphic, they are the same set! We can construct the mapping where \(f(s \in S) = \lfloor \frac{s}{2} \rfloor \). The mapping is indeed onto, but 3 and 4 map to 1 and 7 and 8 map to 3. So it is not 1-1, it is 2-1.