CS 2800 - Homework 9 - Due Wednesday April 21
at the beginning of lecture

INCLUDE THIS COVER PAGE WITH YOUR HOMEWORK

NETID:

NAME:

<table>
<thead>
<tr>
<th>problem</th>
<th>grade</th>
<th>memo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1
You should justify/prove all your answers.

Problem 1

Show that the following are equivalent:

(a) A graph G with n nodes is connected and has no cycles.
(b) A graph G with n nodes is connected and has $n - 1$ edges.

Problem 2

Suppose G is a graph with n nodes and m edges.

(a) What is the minimum number of connected components G could have?
(b) What is the maximum number of connected components G could have?

Problem 3

In this problem we will consider the n dimensional cube. For all $n \geq 1$, the graph Cube_n is defined as follows. The vertex set is all possible 0/1 strings of length n and $\{u, v\}$ is an edge of Cube_n iff u and v differ in exactly one position. For $n = 1$ we have a single edge, for $n = 2$ we have a square, for $n = 3$ we have the edges of a cube.

Find the chromatic number $\chi(\text{Cube}_n)$.

Problem 4

Consider the n dimensional cubes defined in the last problem. For which n is Cube_n Eulerian?

Problem 5

We can define the notion of a random graph on n nodes $V = \{1, \ldots, n\}$ as follows. For each possible edge $\{i, j\}$ we include the edge in the graph with probability p and don’t include it with probability $1 - p$.

(a) What is the expected number of edges in a random graph?
(b) What is the expected number of triangles? (a triangle is a cycle of length 3)
(c) What is the probability that a random graph is complete?