Regular Languages and Finite Automata

Theorem: Every regular language is accepted by some finite automaton.

Proof: We proceed by induction on the (length of/structure of) the description of the regular language. We need to show that

- \emptyset is accepted by a finite automaton
 - Easy: build an automaton where no input ever reaches a final state
- λ is accepted by a finite automaton
 - Easy: an automaton where the initial state accepts
- each $x \in I$ is accepted by a finite automaton
 - Easy: an automaton with two states, where x leads from s_0 to a final state.
- if A and B are accepted, so is AB

Proof: Suppose that $M_A = (S_A, I, f_A, s_A, F_A)$ accepts A and $M_B = (S_B, I, f_B, s_B, F_B)$ accepts B. Suppose that M_A and M_B and NFAs, and S_A and S_B are disjoint (without loss of generality).

Idea: We hook M_A and M_B together.
Let NFS $M_{AB} = (S_A \cup S_B, I, f_{AB}, s_A, F_B^+)$, where

* $F_B^+ = \begin{cases} F_B \cup F_A & \text{if } \lambda \in B; \\ F_B & \text{otherwise} \end{cases}$

* $t \in f_{AB}(s, i)$ if either
 * $s \in S_A$ and $t \in f_A(s)$, or
 * $s \in S_B$ and $t \in f_B(s)$, or
 * $s \in F_A$ and $t \in f_B(s_B)$.

Idea: given input $xy \in AB$, the machine “guesses” when to switch from running M_A to running M_B.

* M_{AB} accepts AB.

• if A and B are accepted, so is $A \cup B$.

* $M_{A \cup B} = (S_A \cup S_B \cup \{s_0\}, I, f_{A \cup B}, s_0, F_{A \cup B})$, where
 * s_0 is a new state, not in $S_A \cup S_B$
 * $f_{A \cup B}(s) = \begin{cases} f_A(s) & \text{if } s \in S_A \\ f_B(s) & \text{if } s \in S_B \\ f_A(s_A) \cup f_B(s_B) & \text{if } s = s_0 \end{cases}$
 * $F_{A \cup B} = \begin{cases} F_A \cup F_B \cup \{s_0\} & \text{if } \lambda \in A \cup B \\ F_A \cup F_B & \text{otherwise.} \end{cases}$

* $M_{A \cup B}$ accepts $A \cup B$.
• if A is accepted, so is A^*.

 • $M_{A^*} = (S_A \cup \{s_0\}, I, f_{A^*}, s_0, F_A \cup \{s_0\})$, where
 * s_0 is a new state, not in S_A;
 * $f_{A^*}(s) = \begin{cases} f_A(s) & \text{if } s \in S_A - F_A; \\ f_A(s) \cup f_A(s_A) & \text{if } s \in F_A; \\ f_A(s_A) & \text{if } s = s_0 \end{cases}$
 • M_{A^*} accepts A^*.
A Non-Regular Language

Not every language is regular (which means that not every language can be accepted by a finite automaton).

Theorem: $L = \{0^n1^n : n = 0, 1, 2, \ldots \}$ is not regular.

Proof: Suppose, by way of contradiction, that L is regular. Then there is a DFA $M = (S, \{0, 1\}, f, s_0, F)$ that accepts L. Suppose that M has N states. Let s_0, \ldots, s_{2N} be the set of states that M goes through on input 0^N1^N.

- Thus $f(s_i, 0) = s_{i+1}$ for $i = 0, \ldots, N$.

Since M has N states, by the pigeonhole principle (remember that?), at least two of s_0, \ldots, s_N must be the same. Suppose it’s s_i and s_j, where $i < j$, and $j - i = t$.

Claim: M accepts $0^N0^t1^N$, and $0^N0^{2t}1^N$, $O^N0^{3t}1^N$.

Proof: Starting in s_0, O^i brings the machine to s_i; another 0^t bring the machine back to s_i (since $s_j = s_{i+t} = s_i$); another 0^t bring machine back to s_i again. After going around the loop for a while, the can continue to s_N and accept.
The Pumping Lemma

The techniques of the previous proof generalize. If \(M \) is a DFA and \(x \) is a string accepted by \(M \) such that \(|x| \geq |S| \)

- \(|S|\) is the number of states; \(|x|\) is the length of \(x \)
then there are strings \(u, v, w \) such that

- \(x = uvw \),
- \(|uv| \leq |S|\),
- \(|v| \geq 1\),
- \(uv^i w \) is accepted by \(M \), for \(i = 0, 1, 2, \ldots \).

The proof is the same as on the previous slide.

- \(x \) was \(0^n 1^n \), \(u = 0^i \), \(v = 0^t \), \(w = 0^{N-t-i} 1^N \).

We can use the Pumping Lemma to show that many languages are not regular

- \(\{1^{n^2} : n = 0, 1, 2, \ldots \} \): homework
- \(\{0^{2n} 1^n : n = 0, 1, 2, \ldots \} \): homework
- \(\{1^n : n \text{ is prime}\} \)
- \(\ldots \)
More Powerful Machines

Finite automata are very simple machines.

- They have no memory
- Roughly speaking, they can’t count beyond the number of states they have.

Pushdown automata have states and a *stack* which provides unlimited memory.

- They can recognize all languages generated by *context-free grammars* (CFGs)
 - CFGs are typically used to characterize the syntax of programming languages
- They can recognize the language \(\{0^n1^n : n = 0, 1, 2, \ldots \} \), but not the language \(L' = \{0^n1^n2^n : n = 0, 1, 2, \ldots \} \)

Linear bounded automata can recognize \(L' \).

- More generally, they can recognize *context-sensitive grammars* (CSGs)
- CSGs are (almost) good enough to characterize the grammar of real languages (like English)
Most general of all: Turing machine (TM)

- Given a *computable* language, there is a TM that accepts it.

- This is essentially how we define computability.

If you’re interested in these issues, take CS 3810!
Coverage of Final

• everything covered by the first prelim
 ○ emphasis on more recent material
• Chapter 4: Fundamental Counting Methods
 ○ Permutations and combinations
 ○ Combinatorial identities
 ○ Pascal’s triangle
 ○ Binomial Theorem (but not multinomial theorem)
 ○ Balls and urns
 ○ Inclusion-exclusion
 ○ Pigeonhole principle
• Chapter 6: Probability:
 ○ 6.1–6.5 (but not inverse binomial distribution)
 ○ basic definitions: probability space, events
 ○ conditional probability, independence, Bayes Thm.
 ○ random variables
 ○ uniform and binomial distribution
 ○ expected value and variance
• Chapter 7: Logic:
 ○ 7.1–7.4, 7.6, 7.7; *not* 7.5
 ○ translating from English to propositional (or first-order) logic
 ○ truth tables and axiomatic proofs
 ○ algorithm verification
 ○ first-order logic

• Chapter 3: Graphs and Trees
 ○ basic terminology: digraph, dag, degree, multigraph, path, connected component, clique
 ○ Eulerian and Hamiltonian paths
 * algorithm for telling if graph has Eulerian path
 ○ BFS and DFS
 ○ bipartite graphs
 ○ graph coloring and chromatic number
 ○ graph isomorphism

• Finite State Automata
 ○ describing finite state automata
 ○ regular languages and finite state automata
 ○ nondeterministic vs. deterministic automata
 ○ pumping lemma (understand what it’s saying)
Some Bureaucracy

- The final is on Friday, May 15, 2-4:30 PM, in Olin 155
- If you have a conflict and haven’t told me, let me know now
 - Also tell me the courses and professors involved (with emails)
 - Also tell the other professors
- Office hours go on as usual during study week, but check the course web site soon.
 - There may be small changes to accommodate the TA’s exams
- There will be two review sessions: May 12 (7 PM) and May 13 (4:45)
Ten Powerful Ideas

• **Counting**: Count without counting (*combinatorics*)

• **Induction**: Recognize it in all its guises.

• **Exemplification**: Find a sense in which you can try out a problem or solution on small examples.

• **Abstraction**: Abstract away the inessential features of a problem.

 ◦ One possible way: represent it as a graph

• **Modularity**: Decompose a complex problem into simpler subproblems.

• **Representation**: Understand the relationships between different possible representations of the same information or idea.

 ◦ Graphs vs. matrices vs. relations

• **Refinement**: The best solutions come from a process of repeatedly refining and inventing alternative solutions.

• **Toolbox**: Build up your vocabulary of abstract structures.
• **Optimization**: Understand which improvements are worth it.

• **Probabilistic methods**: Flipping a coin can be surprisingly helpful!
Connections: Random Graphs

Suppose we have a random graph with \(n \) vertices. How likely is it to be connected?

- What is a random graph?
 - If it has \(n \) vertices, there are \(\binom{n}{2} \) possible edges, and \(2^{\binom{n}{2}} \) possible graphs. What fraction of them is connected?
 - One way of thinking about this. Build a graph using a random process, that puts each edge in with probability \(1/2 \).

- Given three vertices \(a, b, \) and \(c \), what’s the probability that there is an edge between \(a \) and \(b \) and between \(b \) and \(c \)? \(1/4 \)

- What is the probability that there is no path of length 2 between \(a \) and \(c \)? \((3/4)^{n-2} \)

- What is the probability that there is a path of length 2 between \(a \) and \(c \)? \(1 - (3/4)^{n-2} \)

- What is the probability that there is a path of length 2 between \(a \) and every other vertex? \(> (1-(3/4)^{n-2})^{n-1} \)
Now use the binomial theorem to compute

\[(1 - (3/4)^{n-2})^{n-1}\]

\[= 1 - (n - 1)(3/4)^{n-2} + C(n - 1, 2)(3/4)^2(n-2) + \ldots\]

For sufficiently large \(n\), this will be (just about) 1.

Bottom line: If \(n\) is large, then it is almost certain that a random graph will be connected.

Theorem: [Fagin, 1976] If \(P\) is any property expressible in first-order logic, it is either true in almost all graphs, or false in almost all graphs.

This is called a 0-1 law.
Suppose you wanted to query a database. How do you do it?

Modern database query language date back to SQL (structured query language), and are all based on first-order logic.

• The idea goes back to Ted Codd, who invented the notion of relational databases.

Suppose you’re a travel agent and want to query the airline database about whether there are flights from Ithaca to Santa Fe.

• How are cities and flights between them represented?
• How do we form this query?

You’re actually asking whether there is a path from Ithaca to Santa Fe in the graph.

• This fact cannot be expressed in first-order logic!
(A Little Bit on) NP

(No details here; just a rough sketch of the ideas. Take CS 3810/4820 if you want more.)

NP = nondeterministic polynomial time

• a language (set of strings) L is in NP if, for each $x \in L$, you can guess a witness y showing that $x \in L$ and quickly (in polynomial time) verify that it’s correct.

• Examples:
 ◦ Does a graph have a Hamiltonian path?
 * guess a Hamiltonian path
 ◦ Is a formula satisfiable?
 * guess a satisfying assignment
 ◦ Is there a schedule that satisfies certain constraints?
 ◦ . . .

Formally, L is in NP if there exists a language L' such that

1. $x \in L$ iff there exists a y such that $(x, y) \in L'$, and
2. checking if $(x, y) \in L'$ can be done in polynomial time
NP-completeness

• A problem is NP-hard if every NP problem can be reduced to it.

A problem is NP-complete if it is in NP and NP-hard

 • Intuitively, if it is one of the hardest problems in NP.

There are lots of problems known to be NP-complete

• If any NP complete problem is doable in polynomial time, then they all are.

 ◦ Hamiltonian path
 ◦ satisfiability
 ◦ scheduling
 ◦ ...

• If you can prove P = NP, you’ll get a Turing award.