Regular Expressions

A regular expression is an algebraic way of defining a pattern

- We’ll show that regular expressions define exactly those languages that can be accepted by a finite automaton.

Definition: The set of regular expressions over \(I \) (where \(I \) is an input set) is the least set such that:

- the symbol \(\emptyset \) is a regular expression;
- the symbol \(\lambda \) is a regular expression;
- the symbol \(x \) is a regular expression if \(x \in I \);
- if \(A \) and \(B \) are regular expressions, then so are \(AB \), \(A \cup B \), and \(A^* \).

That is, we start with the empty set, \(\emptyset \), and elements of \(I \), then close off under union, concatenation, and \(* \). Those of you familiar with the programming language Perl or Unix searches should recognize the syntax . . .

Each regular expression \(E \) over \(I \) defines a subset \(I^* \), denoted \(L(E) \) (the language of \(E \)) in the obvious way:

- \(L(\emptyset) = \emptyset \);
- \(L(\lambda) = \{ \lambda \} \);
- \(L(x) = \{ x \} \);
- \(L(AB) = L(A)L(B) \);
- \(L(A \cup B) = L(A) \cup L(B) \);
- \(L(A^*) = L(A)^* \).

Examples:

- What’s \(0^*10^*0^* \)?
- What’s \((0^*10^*10^*)^n\)?
- \((0^*10^*10^*)^* \) is the language accepted by the parity automaton!

- If \(\Sigma = \{ a, \ldots, z, A, \ldots, Z, 0, \ldots, 9 \} \cup \text{Punctuation} \), what is \(\Sigma^*\text{Halpern}^{\Sigma^*} \)?
 - Punctuation consists of the punctuation symbols (comma, period, etc.)
 - \(\Sigma \) is an abbreviation of \(a \cup b \cup \ldots \) (the union of the symbols in \(\Sigma \))

Can you define an automaton that accepts exactly the strings in \(\Sigma^*\text{Halpern}^{\Sigma^*} \)?

- How many states would you need?

What language is represented by the automaton in the original example:

- \((10)^*0^*((110) \cup (111))^* \)

What language is accepted by the following three automata (Rosen, p. 807, Figure 2)?

1*

1 \cup 01

0^* \cup 0^*10(0 \cup 1)^*

Nondeterministic Finite Automata

So far we’ve consider **deterministic** finite automata (DFA)

- what happens in a state is completely determined by the input, symbol read

Nondeterministic finite automata allow several possible next states when an input is read.

Formally, a nonterminstic finite automaton is a tuple \(M = (S, I, f, s_0, F) \). All the components are just like a DFA, except now \(f : S \times I \rightarrow 2^S \) (before, \(f : S \times I \rightarrow S \)).

- if \(s' \in f(s, i) \), then \(s' \) is a possible next state if the machines is in state \(s \) and sees input \(i \).

We can still use a graph to represent an NFA. There might be several edges coming out of a state labeled by \(i \in I \).

In the example below (Rosen, p. 812; Figure 7), there are two edges coming out of \(s_0 \) labeled 0.

- can either stay in \(s_0 \) or move to \(s_2 \)
An NFA M accepts (or recognizes) a string x if it is possible to get to a final state from the start state with input x.

The language L is accepted by an NFA M consists of all strings accepted by M.

What language is accepted by the NFA above?

$0^* \cup 0^*01 \cup 0^*11$

Problem: Write an automaton that accepts a string if it contains “man” as a substring. Here’s the obvious choice:

This doesn’t quite work: For example, it won’t accept “command”.

- We can correct the problem using nondeterminism.

Theorem: Every nondeterministic finite automaton is equivalent to some deterministic finite automaton.

Proof: Given an NFA $M = (S, I, f, s_0, F)$, let $M' = (2^S, I, f', \{s_0\}, F')$, where

- $f'(A, i) = \{ t : t \in f(s, i) \text{ for some } s \in A \} \in 2^S$
- $f : 2^S \times I \rightarrow 2^S$
- $F' = \{ A : A \cap F \neq \emptyset \}$

Thus,

- the states in M' are subsets of states in M;
- the final states in M' are the sets which contain a final state in M;
- in state A, given input i, the next state consists of all possible next states from an element in A.

M' is deterministic.

- This is called the subset construction.
- The states in M' are subsets of states in M.

We want to show that M accepts x iff M' accepts x.

- Let $x = x_1 \ldots x_k$.
- If M accepts x, then there is a sequence of states s_0, \ldots, s_k such that $s_k \in F$ and $s_{i+1} \in f(s_i, x_i)$.
 - That’s what it means for an NFA M to accept x
 - s_0, \ldots, s_k is a possible sequence of states that M goes through on input x
 - It’s only one possible sequence: M is an NFA
- Define A_0, \ldots, A_k inductively:
 - $A_0 = \{ s_0 \}$ and $A_{i+1} = f'(A_i, x_i)$.

 - A_0, \ldots, A_k is the sequence of states that M' goes through on input x.
 - Remember: a state in M' is a set of states in M.
 - M' is deterministic: this sequence is unique.

 - An easy induction shows that $s_i \in A_i$.
 - Therefore $s_k \in A_k$, so $A_k \cap F \neq \emptyset$.
 - Conclusion: $A_k \in F'$, so M' accepts x.

Equivalence of Automata

Every DFA is an NFA, but not every NFA is a DFA.

- Do we gain extra power from nondeterminism?
 - Are there languages that are accepted by an NFA that can’t be accepted by a DFA?
 - Somewhat surprising answer: NO!

Define two automata to be equivalent if they accept the same language.

Examples:
For the converse, suppose that M' accepts x

- Let A_0, \ldots, A_k be the sequence of states that M' goes through on input x.
- Since $A_k \cap F \neq \emptyset$, there is some $t_k \in A_k \cap F$.
- By induction, if $1 \leq j \leq k$, can find $t_{k-j} \in A_{k-j}$ such that $t_{k-j+1} \in f(t_{k-j}, x_{k-j})$.
- Since $A_0 = \{s_0\}$, we must have $s_0 = t_0$.
- Thus, $t_0 \ldots t_k$ is an “accepting path” for x in M.
- Conclusion: M accepts x.

Notes:
- Michael Rabin and Dana Scott won a Turing award for defining NFAs and showing they are equivalent to DFAs.
- This construction blows up the number of states:
 - $|S'| = 2^{|S|}$
 - Sometimes you can do better; in general, you can’t.

Example: