Regular Expressions

A *regular expression* is an algebraic way of defining a pattern

- We’ll show that regular expressions define exactly those languages that can be accepted by a finite automaton.

Definition: The set of *regular expressions over* I (where I is an input set) is the least set such that:

- the symbol \emptyset is a regular expression;
- the symbol λ is a regular expression;
- the symbol x is a regular expression if $x \in I$;
- if A and B are regular expressions, then so are AB, $A \cup B$, and A^*.

That is, we start with the empty set, λ, and elements of I, then close off under union, concatenation, and $*$. Those of you familiar with the programming language Perl or Unix searches should recognize the syntax . . .
Each regular expression E over I defines a subset I^*, denoted $L(E)$ (the \textit{language} of E) in the obvious way:

- $L(\emptyset) = \emptyset$;
- $L(\lambda) = \{\lambda\}$;
- $L(x) = \{x\}$;
- $L(AB) = L(A)L(B)$;
- $L(A \cup B) = L(A) \cup L(B)$;
- $L(A^*) = L(A)^*$.

Examples:

- What’s $0*10*10*$?
- What’s $(0*10*10^*)^n$? $(0*10*10^*)^*$?
- $(0*10*10^*)^*$ is the language accepted by the parity automaton!
- If $\Sigma = \{a, \ldots, z, A, \ldots, Z, 0, \ldots, 9\} \cup \text{Punctuation}$, what is $\Sigma^* \text{Halpern} \Sigma^*$?
 - \textit{Punctuation} consists of the punctuation symbols (comma, period, etc.)
 - Σ is an abbreviation of $a \cup b \cup \ldots$ (the union of the symbols in Σ)
Can you define an automaton that accepts exactly the strings in $\Sigma^*Halpern\Sigma^*$?

- How many states would you need?

What language is represented by the automaton in the original example:

- $((10)^*0^*((110) \cup (111))^*)^*$

What language is accepted by the following three automata (Rosen, p. 807, Figure 2)?

1

1 \cup 01

$0^* \cup 0^*10(0 \cup 1)^*$
Nondeterministic Finite Automata

So far we’ve consider deterministic finite automata (DFA)

- what happens in a state is completely determined by the input. symbol read

Nondeterministic finite automata allow several possible next states when an input is read.

Formally, a nonsterministic finite automaton is a tuple \(M = (S, I, f, s_0, F) \). All the components are just like a DFA, except now \(f : S \times I \rightarrow 2^S \) (before, \(f : S \times I \rightarrow S \)).

- if \(s' \in f(s, i) \), then \(s' \) is a possible next state if the machines is in state \(s \) and sees input \(i \).

We can still use a graph to represent an NFA. There might be several edges coming out of a state labeled by \(i \in I \). In the example below (Rosen, p. 812; Figure 7), there are two edges coming out of \(s_0 \) labeled 0.

- can either stay in \(s_0 \) or move to \(s_2 \)
• An NFA M accepts (or recognizes) a string x if it is possible to get to a final state from the start state with input x.

• The language L is accepted by an NFA M consists of all strings accepted by M.

What language is accepted by the NFA above?

$0^* \cup 0^*01 \cup 0^*11$

Problem: Write an automaton that accepts a string if it contains “man” as a substring. Here’s the obvious choice:

This doesn’t quite work: For example, it won’t accept “command”.

• We can correct the problem using nondeterminism.
Equivalence of Automata

Every DFA is an NFA, but not every NFA is a DFA.

• Do we gain extra power from nondeterminism?
 ◦ Are there languages that are accepted by an NFA that can’t be accepted by a DFA?
 ◦ Somewhat surprising answer: NO!

Define two automata to be *equivalent* if they accept the same language.

Examples:
Theorem: Every nondeterministic finite automaton is equivalent to some deterministic finite automaton.

Proof: Given an NFA $M = (S, I, f, s_0, F)$, let $M' = (2^S, I, f', \{s_0\}, F')$, where

- $f'(A, i) = \{ t : t \in f(s, i) \text{ for some } s \in A \} \in 2^S$
 - $f : 2^S \times \to 2^S$
- $F' = \{ A : A \cap F \neq \emptyset \}$

Thus,

- the states in M' are subsets of states in M;
- the final states in M' are the sets which contain a final state in M;
- in state A, given input i, the next state consists of all possible next states from an element in A.

M' is deterministic.

- This is called the *subset* construction.
- The states in M' are subsets of states in M.
We want to show that M accepts x iff M' accepts x.

- Let $x = x_1 \ldots x_k$.
- If M accepts x, then there is a sequence of states s_0, \ldots, s_k such that $s_k \in F$ and $s_{i+1} \in f(s_i, x_i)$.
 - That’s what it means for an NFA M to accept x
 - s_0, \ldots, s_k is a possible sequence of states that M goes through on input x
 * It’s only one possible sequence: M is an NFA
- Define A_0, \ldots, A_k inductively:
 $A_0 = \{s_0\}$ and $A_{i+1} = f'(A_i, x_i)$.
 - A_0, \ldots, A_k is the sequence of states that M' goes through on input x
 * Remember: a state in M' is a set of states in M.
 * M' is deterministic: this sequence is unique.
 - An easy induction shows that $s_i \in A_i$.
 - Therefore $s_k \in A_k$, so $A_k \cap F \neq \emptyset$.
 - Conclusion: $A_k \in F'$, so M' accepts x.
For the converse, suppose that M' accepts x

- Let A_0, \ldots, A_k be the sequence of states that M' goes through on input x.

- Since $A_k \cap F \neq \emptyset$, there is some $t_k \in A_k \cap F$.

- By induction, if $1 \leq j \leq k$, can find $t_{k-j} \in A_{k-j}$ such that $t_{k-j+1} \in f(t_{k-j}, x_{k-j})$.

- Since $A_0 = \{s_0\}$, we must have $s_0 = t_0$.

- Thus, $t_0 \ldots t_k$ is an “accepting path” for x in M.

- Conclusion: M accepts x
Notes:

- Michael Rabin and Dana Scott won a Turing award for defining NFAs and showing they are equivalent to DFAs
- This construction blows up the number of states:
 - $|S'| = 2^{|S|}$
 - Sometimes you can do better; in general, you can’t

Example: