BFS and Shortest Length Paths

If all edges have equal length, we can extend this algorithm to find the shortest path length from v to any other vertex:

- Store the path length with each node when you add it.
- $\text{Length}(v) = 0$.
- $\text{Length}(w) = \text{Length}(u) + 1$

With a little more work, can actually output the shortest path from u to v.

- This is an example of how BFS and DFS arise unexpectedly in a number of applications.
 - We’ll see a few more
Depth-First Search

Input $G(V, E)$ [a connected graph]
v [start vertex]

Algorithm Depth-First Search
visit v
$V' \leftarrow \{v\}$ [V' is the vertices already visited]
Put v on S [S is a stack]
$u \leftarrow v$
repeat while $S \neq \emptyset$
if $A(u) - V' \neq \emptyset$
then Choose $w \in A(u) - V'$
visit w
$V' = V' \cup \{w\}$
Put w on stack
$u \leftarrow w$
else $u \leftarrow \text{top}(S)$ [Pop the stack]
endif
endrepeat

DFS uses backtracking
• Go as far as you can until you get stuck
• Then go back to the first point you had an untried choice
Spanning Trees

A *spanning tree* of a connected graph $G(V, E)$ is a connected acyclic subgraph of G, which includes all the vertices in V and only (some) edges from E.

Think of a spanning tree as a “backbone”; a minimal set of edges that will let you get everywhere in a graph.

- Technically, a spanning tree isn’t a tree, because it isn’t directed.

The BFS search tree and the DFS search tree are both spanning trees.

- In the text, they give algorithms to produce minimum weight spanning trees
- That’s done in CS 482, so we won’t do it here.
Graph Coloring

How many colors do you need to color the vertices of a graph so that no two adjacent vertices have the same color?

- Application: scheduling
 - Vertices of the graph are courses
 - Two courses taught by same prof are joined by edge
 - Colors are possible times class can be taught.

Lots of similar applications:

- E.g. assigning wavelengths to cell phone conversations to avoid interference.
 - Vertices are conversations
 - Edges between “nearby” conversations
 - Colors are wavelengths.

- Scheduling final exams
 - Vertices are courses
 - Edges between courses with overlapping enrollment
 - Colors are exam times.
Chromatic Number

The *chromatic number* of a graph G, written $\chi(G)$, is the smallest number of colors needed to color it so that no two adjacent vertices have the same color.

Examples:

A graph G is *k-colorable* if $k \geq \chi(G)$.
Determining $\chi(G)$

Some observations:

• If G is a complete graph with n vertices, $\chi(G) = n$

• If G has a clique of size k, then $\chi(G) \geq k$.

 ◦ Let $c(G)$ be the *clique number* of G: the size of the largest clique in G. Then

 $$\chi(G) \geq c(G)$$

• If $\Delta(G)$ is the maximum degree of any vertex, then

 $$\chi(G) \leq \Delta(G) + 1$$

 ◦ Color G one vertex at a time; color each vertex with the “smallest” color not used for a colored vertex adjacent to it.

How hard is it to determine if $\chi(G) \leq k$?

• It’s NP complete, just like

 ◦ determining if $c(G) \geq k$
 ◦ determining if G has a Hamiltonian path
 ◦ determining if a propositional formula is satisfiable

Can guess and verify.
Bipartite Graphs

A graph $G(V, E)$ is bipartite if we can partition V into disjoint sets V_1 and V_2 such that all the edges in E joins a vertex in V_1 to one in V_2.

- A graph is bipartite iff it is 2-colorable
- Everything in V_1 gets one color, everything in V_2 gets the other color.

Example: Suppose we want to represent the “is or has been married to” relation on people. Can partition the set V of people into males (V_1) and females (V_2). Edges join two people who are or have been married.
Characterizing Bipartite Graphs

Theorem: G is bipartite iff G has no odd-length cycles.

Proof: Suppose that G is bipartite, and it has edges only between V_1 and V_2. Suppose, to get a contradiction, that $(x_0, x_1, \ldots, x_{2k}, x_0)$ is an odd-length cycle. If $x_0 \in V_1$, then x_2 is in V_1. An easy induction argument shows that $x_{2i} \in V_1$ and $x_{2i+1} \in V_2$ for $0 = 1, \ldots, k$. But then the edge between x_{2k} and x_0 means that there is an edge between two nodes in V_1; this is a contradiction.

- Get a similar contradiction if $x_0 \in V_2$.

Conversely, suppose $G(V, E)$ has no odd-length cycles.

- Partition the vertices in V into two sets as follows:
 - Start at an arbitrary vertex x_0; put it in V_0.
 - Put all the vertices one step from x_0 into V_1
 - Put all the vertices two steps from x_0 into V_0;
 - \ldots

This construction works if G is connected and has no odd-length cycles.

- What if G isn’t connected?

This construction also gives a polynomial-time algorithm for checking if a graph is bipartite.
The Four-Color Theorem

Can a map be colored with four colors, so that no countries with common borders have the same color?

• This is an instance of graph coloring
 ◦ The vertices are countries
 ◦ Two vertices are joined by an edge if the countries they represent have a common border

A planar graph is one where all the edges can be drawn on a plane (piece of paper) without any edges crossing.

• The graph of a map is planar

Graphs that are planar and ones that aren’t:

Four-Color Theorem: Every map can be colored using at most four colors so that no two countries with a common boundary have the same color.

• Equivalently: every planar graph is four-colorable
Four-Color Theorem: History

- First conjectured by Galton (Darwin’s cousin) in 1852
- False proofs given in 1879, 1880; disproved in 1891
- Computer proof given by Appel and Haken in 1976
 - They reduced it to 1936 cases, which they checked by computer
- Proof simplified in 1996 by Robertson, Sanders, Seymour, and Thomas
 - But even their proof requires computer checking
 - They also gave an $O(n^2)$ algorithm for four coloring a planar graph
- Proof checked by Coq theorem prover (Werner and Gonthier) in 2004
 - So you don’t have to trust the proof, just the theorem prover

Note that the theorem doesn’t apply to countries with non-contiguous regions (like U.S. and Alaska).
Graph Isomorphism

When are two graphs that may look different when they’re drawn, really the same?

Answer: $G_1(V_1, E_1)$ and $G_2(V_2, E_2)$ are isomorphic if they have the same number of vertices ($|V_1| = |V_2|$) and we can relabel the vertices in G_2 so that the edge sets are identical.

- Formally, G_1 is isomorphic to G_2 if there is a bijection $f : V_1 \rightarrow V_2$ such that $\{v, v'\} \in E_1$ iff $\{f(v), f(v')\} \in E_2$.
- Note this means that $|E_1| = |E_2|$
Checking for Graph Isomorphism

There are some obvious requirements for \(G_1(V_1, E_1) \) and \(G_2(V_2, E_2) \) to be isomorphic:

- \(|V_1| = |V_2| \)
- \(|E_1| = |E_2| \)
- for each \(d \), \(\#(\text{vertices in } V_1 \text{ with degree } d) = \#(\text{vertices in } V_1 \text{ with degree } d) \)

Checking for isomorphism is in NP:

- Guess an isomorphism \(f \) and verify
- We believe it’s not in polynomial time and not NP complete.
Patterns and Finite Automata

A pattern is a set of objects with a recognizable property.

- In computer science, we’re typically interested in patterns that are sequences of character strings
 - I think “Halpern” a very interesting pattern
 - I may want to find all occurrences of that pattern in a paper

- Other patterns:
 - if followed by any string of characters followed by then
 - all filenames ending with “.doc”

Pattern matching comes up all the time in text search.

A finite automaton is a particularly simple computing device that can recognize certain types of patterns, called regular languages

- in the next two weeks, we’ll study finite automata and regular languages
Finite Automata

A *finite automaton* is a machine that is always in one of a finite number of states.

- When it gets some input, it moves from one state to another
 - If I’m in a “sad” state and someone hugs me, I move to a “happy” state
 - If I’m in a “happy” state and someone yells at me, I move to a “sad” state

- **Example:** A digital watch with “buttons” on the side for changing the time and date, or switching it to “stopwatch” mode, is an automaton
 - What’s are the states and inputs of this automaton?

- A certain state is denoted the **start** state
 - That’s how the automaton starts life

- Other states are denoted **final** state
 - The automaton stops when it reaches a final state
 - (A digital watch has no final state, unless we count running out of battery power.)
Representing Finite Automata Graphically

A finite automaton can be represented by a labeled directed graph.

- The nodes represent the states of the machine
- The edges are labeled by inputs, and describe how the machine transitions from one state to another
Consider the following example from Rosen (Example 4, p. 805):

- There are four states: s_0, s_1, s_2, s_3
 - s_0 is the start state (by convention)
 - s_0 and s_3 are the final states (denoted by double circles, by convention)
- The labeled edges represent the transitions, and describe what happens for each possible input
 - The inputs are either 0 or 1
 - For example, if the machine is
 - * in state s_0 and reads 0, it stays in s_0
 - * in state s_0 and reads 1, it moves to s_1
 - * in state s_1 and reads 0, it moves to s_1
 - * in state s_1 and reads 1, it moves to s_2
What happens on input 00000? 0101010? 010101? 11?
- Some strings move it a final state; some don’t.
- The strings that take it to a final state are *accepted.*
A Parity-Checking Automaton

Here’s an automaton that accepts strings of 0s and 1s that have even parity:

- An even number of 1s

We need two states:

- s_0: we’ve seen an even number of 1s so far
- s_1: we’ve seen an odd number of 1s so far

The transition function is easy:

- If you see a 0, stay where you are; the number of 1s hasn’t changed
- If you see a 1, move from s_0 to s_1, and from s_1 to s_0

Here’s the graph:
Finite Automata: Formal Definition

A \textit{(deterministic) finite automaton} is a tuple \(M = (S, I, f, s_0, F) \):

- \(S \) is a finite set of states;
- \(I \) is a finite input alphabet (e.g. \(\{0, 1\} \), \(\{a, \ldots, z\} \))
- \(f \) is a transition function; \(f : S \times I \rightarrow S \)
 - \(f \) describes what the next state is if the machine is in state \(s \) and sees input \(i \in I \).
- \(s_0 \in S \) is the initial state;
- \(F \) is the set of final states.

For the figure from Rosen:

- \(S = \{s_0, s_1, s_2, s_3\} \)
- \(I = \{0, 1\} \)
- \(F = \{s_0, s_3\} \)
- The transition function \(f \) is described by the graph;
 - \(f(s_0, 0) = s_0; \ f(s_0, 1) = s_1; \ f(s_1, 0) = s_0; \ldots \)

You should be able to translate back and forth between finite automata and the graphs that describe them.
Describing Languages

The *language* accepted (or *recognized*) by an automaton is the set of strings that it accepts.

- A *language* is a set of strings

We need tools for describing languages.

- If A and B are sets of strings, then AB, the *concatenation* of A and B, is the set of all strings ab such that $a \in A$ and $b \in B$.

 - **Example:** If $A = \{0, 11\}$, $B = \{111, 00\}$, then
 * $AB = \{0111, 000, 1111, 1100\}$
 * $BA = \{1110, 11111, 000, 0011\}$

- Define A^{n+1} inductively:
 - $A^0 = \{\lambda\}$: λ is the empty string
 - $A^1 = A$
 - $A^{n+1} = AA^n$

- $A^* = \bigcup_{n=0}^{\infty} A^n$.
 - What’s $\{0, 1\}^n$? $\{0, 1\}^*$? $\{11\}^*$?