Expectation of geometric distribution

What is the probability that \(X \) is finite?

\[
\sum_{k=1}^{\infty} f_X(k) = \sum_{k=1}^{\infty} (1-p)^{k-1} p = p \sum_{k=0}^{\infty} (1-p)^k = \frac{p}{1-(1-p)} = 1
\]

Can now compute \(E(X) \):

\[
E(X) = \sum_{k=1}^{\infty} k \cdot (1-p)^{k-1} p
= p \sum_{k=1}^{\infty} (1-p)^{k-1} + \sum_{k=2}^{\infty} (1-p)^{k-1} + \sum_{k=3}^{\infty} (1-p)^{k-1} + \cdots
= p\left(\frac{1}{p} + \frac{1-p}{p^2} + \frac{(1-p)^2}{p^3} + \cdots\right)
= 1 + (1-p) + (1-p)^2 + \cdots
= \frac{1}{p}
\]

So, for example, if the success probability \(p \) is 1/3, it will take on average 3 trials to get a success.

• All this computation for a result that was intuitively clear all along . . .

Why not use \(|X(s) - E(X)|\) as the measure of distance instead of variance?

• \((X(s) - E(X))^2\) turns out to have nicer mathematical properties.

• In \(\mathbb{R}^n \), the distance between \((x_1, \ldots, x_n)\) and \((y_1, \ldots, y_n)\) is \(\sqrt{(x_1 - y_1)^2 + \cdots + (x_n - y_n)^2}\).

Example:

• The variance of distribution 1 is
 \[
 \frac{1}{4}(51 - 50)^2 + \frac{1}{4}(50 - 50)^2 + \frac{1}{4}(49 - 50)^2 = \frac{1}{2}
 \]

• The variance of distribution 2 is
 \[
 \frac{1}{3}(100 - 50)^2 + \frac{1}{3}(50 - 50)^2 + \frac{1}{3}(0 - 50)^2 = \frac{5000}{3}
 \]

Expectation and variance are two ways of compactly describing a distribution.

• They don’t completely describe the distribution

• But they’re still useful!

Variance and Standard Deviation

Expectation summarizes a lot of information about a random variable as a single number. But no single number can tell it all.

Compare these two distributions:

• Distribution 1: \(\Pr(49) = \Pr(51) = 1/4; \ \Pr(50) = 1/2. \)

• Distribution 2: \(\Pr(0) = \Pr(50) = \Pr(100) = 1/3. \)

Both have the same expectation: 50. But the first is much less ‘dispersed’ than the second. We want a measure of dispersion.

• One measure of dispersion is how far things are from the mean, on average.

Given a random variable \(X \), \((X(s) - E(X))^2\) measures how far the value of \(s \) is from the mean value (the expectation) of \(X \). Define the variance of \(X \) to be

\[
\text{Var}(X) = E((X - E(X))^2) = \sum_{s \in S} \Pr(s)(X(s) - E(X))^2
\]

The standard deviation of \(X \) is

\[
\sigma_X = \sqrt{\text{Var}(X)} = \sqrt{\sum_{s \in S} \Pr(s)(X(s) - E(X))^2}
\]

Variance: Examples

Let \(X \) be Bernoulli, with probability \(p \) of success. Recall that \(E(X) = p. \)

\[
\text{Var}(X) = (0 - p)^2 \cdot (1 - p) + (1 - p)^2 \cdot p
= p(1-p)[p + (1-p)]
= p(1-p)
\]

Theorem: \(\text{Var}(X) = E(X^2) - E(X)^2. \)

Proof:

\[
E(X - E(X))^2 = E(X^2 - 2EXX + E(X)^2)
= E(X^2) - 2EXX + E(X)^2
= E(X^2) - 2E(X)^2 + E(X)^2
= E(X^2) - E(X)^2
\]

Think of this as \(E((X - c)^2) \), then substitute \(E(X) \) for \(c. \)

Example: Suppose \(X \) is the outcome of a roll of a fair die.

• Recall \(E(X) = 7/2. \)

• \(E(X^2) = 1^2 \cdot \frac{1}{6} + 2^2 \cdot \frac{1}{6} + \cdots + 6^2 \cdot \frac{1}{6} = \frac{91}{3} \)

• So \(\text{Var}(X) = \frac{91}{3} - (\frac{7}{2})^2 = \frac{17}{12}. \)
Markov’s Inequality

Theorem: Suppose X is a nonnegative random variable and $\alpha > 0$. Then

$$\Pr(X \geq \alpha E(X)) \leq \frac{1}{\alpha}.$$

Proof:

$E(X) = \sum_{x} x \cdot \Pr(X = x) \\
\geq \sum_{x \geq \alpha} x \cdot \Pr(X = x) \\
\geq \sum_{x \geq \alpha} \alpha E(X) \cdot \Pr(X = x) \\
= \alpha E(X) \sum_{x \geq \alpha} \Pr(X = x) \\
= \alpha E(X) \cdot \Pr(X \geq \alpha E(X)).$

Example: If X is $B_{100,1/2}$, then

$$\Pr(X \geq 100) = \Pr(X \geq 2E(X)) \leq \frac{1}{2}.$$

This is not a particularly useful estimate. In fact, $\Pr(X \geq 100) = 2^{-100} \sim 10^{-30}$.

Chebyshev’s Inequality: Example

Chebyshev’s inequality gives a lower bound on how well X concentrated about its mean.

- Suppose X is $B_{100,1/2}$ and we want a lower bound on $\Pr(40 < X < 60)$.
- $E(X) = 50$ and

 $$40 < X < 60 \text{ iff } |X - 50| < 10$$

 so

 $$\Pr(40 < X < 60) = \Pr(|X - 50| < 10) = 1 - \Pr(|X - 50| \geq 10).$$

 Now

 $$\Pr(|X - 50| \geq 10) \leq \frac{\text{Var}(X)}{100(1/2)^2} = \frac{1}{4}.$$

 So

 $$\Pr(40 < X < 60) \geq 1 - \frac{1}{4} = \frac{3}{4}.$$

This is not too bad: the correct answer is ~ 0.9611.

Chebyshev’s Inequality

Theorem: If X is a random variable and $\beta > 0$, then

$$\Pr(|X - E(X)| \geq \beta \sigma_X) \leq \frac{1}{\beta^2}.$$

Proof: Let $Y = (X - E(X))^2$. Then

$$|X - E(X)| \geq \beta \sigma_X \text{ iff } Y \geq \beta^2 \text{Var}(X).$$

I.e.,

$$\{s : |X(s) - E(X)| \geq \beta \sigma_X\} = \{s : Y(s) \geq \beta^2 \text{Var}(X)\}.$$

In particular, the probabilities of these events are the same:

$$\Pr(|X - E(X)| \geq \beta \sigma_X) = \Pr(Y \geq \beta^2 \text{Var}(X)).$$

Note that $E(Y) = E[(X - E(X))^2] = \text{Var}(X)$, so

$$\Pr(Y \geq \beta^2 \text{Var}(X)) = \Pr(Y \geq \beta^2 E(Y)).$$

Since $Y \geq 0$, by Markov’s inequality

$$\Pr(|X - E(X)| \geq \beta \sigma_X) = \Pr(Y \geq \beta^2 E(Y)) \leq \frac{1}{\beta^2}.$$

- Intuitively, the probability of a random variable being k standard deviations from the mean is $\leq 1/k^2$.

CS Applications of Probability: Primality Testing

Recall idea of primality testing:

- Choose b between 1 and n at random
- Apply an easily computable (deterministic) test $T(b, n)$ such that
 - $T(b, n) = 1$ (for all b) if n is prime.
 - There are lots of b’s for which $T(b, n) = 0$ if n is not prime.
- In fact, for the standard test T, for at least 1/3 of the b’s between 1 and n, $T(b, n)$ is false if n is composite

So here’s the algorithm:

Input n [number whose primality is to be checked]

Output Prime [Want Prime = 1 iff n is prime]

Algorithm Primality

- for k from 1 to 100 do
 - Choose b at random between 1 and n
 - If $T(b, n) = 0$ return Prime = 0
- endfor
- return Prime = 1.
Probabilistic Primality Testing: Analysis

If \(n \) is composite, what is the probability that algorithm returns \(\text{Prime} = 1 \)?

- \((2/3)^{100} < (2)^{25} \approx 10^{-18}\)
- I wouldn’t lose sleep over mistakes!
- if \(10^{-18} \) is unacceptable, try 200 random choices.

How long will it take until we find a witness

- Expected number of steps is \(\leq 3 \)

What is the probability that it takes \(k \) steps to find a witness?

- \((2/3)^{k-1}(1/3)\)
- geometric distribution!

Bottom line: the algorithm is extremely fast and almost certainly gives the right results.

Finding the Median

Given a list \(S \) of \(n \) numbers, find the median.

- More general problem:
 \(\text{Sel}(S, k) \) — find the \(k \)th largest number in list \(S \)

One way to do it: sort \(S \), then find \(k \)th largest.

- Running time \(O(n \log n) \), since that’s how long it takes to sort

Can we do better?

- Can do \(\text{Sel}(S, 1) \) (max) and \(\text{Sel}(S, n) \) (min) in time \(O(n) \)

A Randomized Algorithm for \(\text{Sel}(S, k) \)

Given \(S = \{a_1, \ldots, a_n\} \) and \(k \), choose \(m \in \{1, \ldots, n\} \) at random:

- Split \(S \) into two sets
 - \(S^+ = \{a_j : a_j > a_m\}\)
 - \(S^- = \{a_j : a_j < a_m\}\)
- this can be done in time \(O(n) \)
- If \(|S^+| \geq k \), \(\text{Sel}(S, k) = \text{Sel}(S^+, k) \)
- If \(|S^+| = k - 1 \), \(\text{Sel}(S, k) = a_m \)
- If \(|S^+| < k - 1 \), \(\text{Sel}(S, k) = \text{Sel}(S^-, k - |S^+| - 1) \)

This is clearly correct and eventually terminates, since \(|S^+|, |S^-| < |S| \)

- What’s the running time for median (\(k = \lceil n/2 \rceil \)):
 - * Worst case \(O(n^2) \)
 - * Always choose smallest element, so \(|S^-| = 0 \), \(S^+ = |S| - 1 \).
 - * Best case \(O(n) \): select \(k \)th largest right away
 - What happens on average?

Selection Algorithm: Running Time

Let \(T(n) \) be the running time on a set of \(n \) elements:

- \(T(n) \) is a random variable,
- We want to compute \(E(T(n)) \)

Say that the algorithm is in phase \(j \) if it is currently working on a set with between \(n(3/4)^j \) and \(n(3/4)^{j+1} \) elements.

- Clearly the algorithm terminates after \(\leq \lceil \log_{3/4}(1/n) \rceil \) phases.
- Then you’re working on a set with 1 element
- A split in phase \(j \) involves \(\leq n(3/4)^j \) comparisons.

What’s the expected length of phase \(j \)?

- If an element between the 25th and 75th percentile is chosen, we move from phase \(j \) to phase \(j + 1 \)
- Thus, the average # of calls in phase \(j \) is 2, and each call in phase \(j \) involves at most \(n(3/4)^j \) comparisons, so
 \[E(T(n)) \leq 2n \sum_{j=0}^{\lceil \log_{3/4}(1/n) \rceil} (3/4)^j \leq 8n \]

Bottom line: the expected running time is linear.

- Randomization can help!
Hashing Revisited

Remember hash functions:

- We have a set S of n elements indexed by ids in a large set U.
- Want to store information for element $s \in S$ in location $h(s)$ in a “small” table (size $\approx n$).
 - E.g., U consists of 10^{10} social security numbers.
 - S consists of 30,000 students.
 - Want to use a table of size, say, 40,000.
- h is a “good” hash function if it minimizes collisions:
 - Don’t want $h(s) = h(t)$ for too many elements t.

How do we find a good hash function?

- Sometimes taking $h(s) = s \mod n$ for some suitable modulus n works.
- Sometimes it doesn’t.

Key idea:

- Naive choice: choose $h(s) \in \{0, \ldots, n-1\}$ at random.
- The good news: $\Pr(h(s) = h(t)) = 1/n$.
- The bad news: how do you find item s in the table?

Theorem: If \mathcal{H} is universal and $|S| \leq n$, then $E(X_{u,S}) \leq 1$.

Proof: Let $X_{uv}(h) = 1$ if $h(u) = h(v)$; 0 otherwise.

- By Property 1 of universal sets of hash function,
 $$E(X_{uv}) = \Pr\{h \in \mathcal{H} : h(u) = h(v)\} = 1/n.$$

$$X_{u,S} = \sum_{v \neq u} e_S X_{uv}.$$

$$E(X_{u,S}) = \sum_{v \neq u} e_S E(X_{uv}) \leq |S|/n = 1$$

What this says:

- If we pick a hash function at random from a universal set of hash functions, then the expected number of collisions is as small as we could expect.
- A random hash function from a universal class is guaranteed to be good, no matter how the keys are distributed.

Universal Sets of Hash Functions

Want to choose a hash function h from some set \mathcal{H}.

- Each $h \in \mathcal{H}$ maps U to $\{0, \ldots, n-1\}$.

A set \mathcal{H} of hash functions is universal if:

1. For all $u \neq v \in U$:
 $$\Pr\{h \in \mathcal{H} : h(u) = h(v)\} = 1/n.$$
 - The probability that two ids hash to the same thing is $1/n$.
 - Exactly as if you’d picked the hash function completely at random.

2. Each $h \in \mathcal{H}$ can be compactly represented; given $h \in \mathcal{H}$ and $u \in U$, we can compute $h(u)$ efficiently.
 - Otherwise it’s too hard to deal with h in practice.

Why we care: For $u \in U$ and $S \subseteq U$, let

$$X_{u,S}(h) = |\{v \neq u \in S : h(v) = h(u)\}|$$

- $X_{u,S}(h)$ counts the number of collisions with u and an element in S for hash function h.
- $X_{u,S}$ is a random variable on \mathcal{H}.

We will show that $E(X_{u,S}) = |S|/n$.

Designing a Universal Set of Hash Functions

The theorem shows that if we choose a hash function at random from a universal set \mathcal{H}, then the expected number of collisions with an arbitrary element u is 1.

- That motivates designing such a universal set.

Here’s one way of doing it, given S and U:

- Let p be a prime, $p \equiv n = |S|$, $p > n$.
 - Can find p using primality testing.
 - Choose r such that $p^r > |U|$.
 - $r \approx \log |U|/\log n$.

- Let $A = \{a_1, \ldots, a_r\} : 0 \leq a_i \leq p - 1$.
 - $|A| = p^r > |U|$.
 - Can identify elements of U with vectors in A.

- Let $\mathcal{H} = \{h_\vec{a} : \vec{a} \in A\}$.
- If $\vec{x} = (x_1, \ldots, x_r)$ define
 $$h_\vec{a}(\vec{x}) = \left(\sum_{i=1}^{r} a_i x_i\right) \pmod{p}.$$
Theorem: \mathcal{H} is universal.

Proof: Clearly there’s a compact representation for the elements of \mathcal{H} – we can identify \mathcal{H} with \mathcal{A}.

Computing $h_{\vec{a}}(\vec{x})$ is also easy: it’s the inner product of \vec{a} and \vec{x}, mod p.

Now suppose that $\vec{x} \neq \vec{y}$.

- For simplicity suppose that $x_1 \neq y_1$
- Must show that $\Pr(\{h \in \mathcal{H} : h(\vec{x}) = h(\vec{y})\}) \leq 1/n$.
- Fix a_j for $j \neq 1$
- For what choices of a_1 is $h_{\vec{a}}(\vec{x}) = h_{\vec{a}}(\vec{y})$?
 - Must have $a_1(y_1 - x_1) \equiv \sum_{j \neq 1} a_j(x_j - y_j) \pmod{p}$
 - Since we’ve fixed a_2, \ldots, a_r, the right-hand side is just a fixed number, say M.
 - There’s a unique a_1 that works:

 $$a_1 = M(y_1 - x_1)^{-1} \pmod{p}$$

- The probability of choosing this a_1 is $1/p < 1/n$.
- That’s true for every fixed choice of a_2, \ldots, a_r.

- Bottom line:

 $$\Pr(\{h \in \mathcal{H} : h(\vec{x}) = h(\vec{y})\}) \leq 1/n.$$

This material is in the Kleinberg-Tardos book (reference on web site).