Recitation 9

Tree Rotations and AVL Trees

Review: Binary Search Tree (BST)

<table>
<thead>
<tr>
<th>ideal case</th>
<th>worst case:</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1) lookup</td>
<td>O(n) lookup</td>
</tr>
<tr>
<td>O(1) insertion</td>
<td>O(n) insertion</td>
</tr>
<tr>
<td>O(1) deletion</td>
<td>O(n) deletion</td>
</tr>
</tbody>
</table>

Make BSTs balanced!

Balanced BST

If a BST becomes unbalanced, we can rebalance it in $O(\log n)$.

Review: definition of Height

```java
public static int getHeight(TreeNode t) {
    if (t == null)
        return -1;
    return 1 + Math.max(getHeight(t.left), getHeight(t.right));
}
```

length of the longest path from a node to a leaf

Definition of Balanced

```java
public static boolean isBalanced(TreeNode t) {
    return t == null ||
           Math.abs(getHeight(t.left) - getHeight(t.right)) <= 1 &&
           isBalanced(t.left) &&
           isBalanced(t.right);
}
```

A tree is balanced if each of its subtrees is balanced and their heights differ by at most 1.

isBalanced: Recursion needed!

All subtrees need to be balanced!
Tree Rotations

Notation

Inorder traversal: $A \times B \times y \times C$

Recall that the BST inorder traversal gives sorted order.

A subtree of height k

Rotations: Used to balance a BST

The blue pointers are the only ones that change.

Inorder traversals are the same

Rotations example

Rebalancing

Problem: Rotating a Zig-Zag!

We get the opposite Zig-Zag!
Double rotate

1st Rotation

still unbalanced node

2nd Rotation

still unbalanced node

Rebalancing with double rotate

1st Rotation

2nd Rotation

Summary of Rotations

Double rotation necessary Only single rotation necessary Balanced!

Symmetry holds for the other cases

Question: What is the resulting tree?
AVL Trees

First invention of self-balancing BSTs. Later: red-black trees, splay trees, and others

AVL Tree

AVL Tree: self-balancing BST

- **AVL invariant:** the height difference between its left and right children is at most 1
- Lookup works the same as a normal BST lookup
- **worst case:**
 - O(log n) lookup
 - O(log n) insertion
 - O(log n) deletion

Inserting an element

- **insert(E elem):** Insert like a normal BST and if the AVL invariant is broken, do a single or double rotation to fix it

 1. Localizing the problem:
 - Imbalance will occur only on the path from the root to the newly inserted node
 - Rebalancing should occur at the deepest node
 - Must search for possible imbalance all the way up to root

https://www.cs.usfca.edu/~galles/visualization/AVLtree.html
Why use AVL Trees?

If HashSets have a lookup of expected $O(1)$, why use BSTs with an expected lookup time of $O(\log n)$?

Depends on the problem:
1. Binary Search Trees are great at keeping elements in sorted order.
2. Key Ranges: How many words in the set start with k and end in z?
3. `findPredecessor(E elem)` and `findSuccessor(E elem)`
 - $O(\log n)$ for AVL Tree, expected case $O(n)$ for HashSet
4. Better worst case lookup and insertion times

Prelim Information

1. Tree Rotations will not be tested on Prelim 2
2. You don’t need to be able to write Tree Rotations code but can find it online if interested