Lecture 5: Recursion
Visual Recursion

http://serendip.brynmawr.edu/exchange/files/authors/faculty/39/literarykinds/infinite_mirror.jpg
Recursion Overview

• Recursion is a powerful technique for specifying functions, sets, and programs

• Example recursively-defined functions and programs
 – factorial
 – combinations
 – exponentiation (raising to an integer power)
 – solution of combinatorial problems (i.e. search)

• Example recursively-defined sets
 – grammars
 – expressions
 – data structures (lists, trees, ...)

• Example recursively-defined programs
The Factorial Function (n!)

- Define: \(n! = n \cdot (n-1) \cdot (n-2) \cdots 3 \cdot 2 \cdot 1 \)
 - read: “n factorial”
 - E.g., \(3! = 3 \cdot 2 \cdot 1 = 6 \)
- The function \(\text{int} \Rightarrow \text{int} \) that gives \(n! \) on input \(n \) is called the factorial function
- \(n! \) is the number of permutations of \(n \) distinct objects
 - There is just one permutation of one object. \(1! = 1 \)
 - There are two permutations of two objects: \(2! = 2 \)
 - \(1 \ 2 \ 2 \ 1 \)
 - There are six permutations of three objects: \(3! = 6 \)
 - \(1 \ 2 \ 3 \ 1 \ 3 \ 2 \ 2 \ 1 \ 3 \ 1 \ 2 \ 3 \ 2 \ 1 \)
Permutations of non-orange blocks

Each permutation of the three non-orange blocks gives four permutations when the orange block is included.

Total number = 4 \cdot 6 = 24 = 4!

→ General:
 - 0! = 1 (by convention)
 - If n > 0, n! = n \cdot (n-1)!
A Recursive Program

Recursive definition of n!

• 0! = 1
• n! = n·(n-1)!, n > 0

static int fact(int n) {
 if (n == 0) return 1;
 else return n*fact(n-1);
}

Execution of fact(4)
General Approach to Writing Recursive Functions

• Try to find a parameter, say n, such that the solution for n can be obtained by combining solutions to the same problem using smaller values of n (e.g., $(n-1)!$) (i.e. recursion)

• Find base case(s) – small values of n for which you can just write down the solution (e.g., $0! = 1$)

• Verify that, for any valid value of n, applying the reduction of step 1 repeatedly will ultimately hit one of the base cases
The Fibonacci Function

• Mathematical definition:
 \(\text{fib}(0) = 0 \)
 \(\text{fib}(1) = 1 \)
 \(\text{fib}(n) = \text{fib}(n-1) + \text{fib}(n-2), \ n \geq 2 \)

• Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, ...

```java
static int fib(int n) {
    if (n == 0) return 0;
    else if (n == 1) return 1;
    else return fib(n-1) + fib(n-2);
}
```

Fibonacci (Leonardo Pisano)
1170-1240?
Statue in Pisa, Italy, Giovanni Paganucci, 1863
Recursive Execution

static int fib(int n) {
 if (n == 0) return 0;
 else if (n == 1) return 1;
 else return fib(n-1) + fib(n-2);
}

Execution of fib(4):

```
fib(4)
  /   \
 /     \n/       
fib(3)   fib(2)
  /     \
 /       
/         
fib(2)   fib(1)
  /   \
 /     
/       
fib(1)  fib(1)
  /     \
 /       
/         
fib(0)   fib(0)
  /     \
 /       
/         
```
Combinations
(a.k.a. Binomial Coefficients)

• How many ways can you choose r items from a set of n distinct elements? \(\binom{n}{r} \) “n choose r”

 \(\binom{n}{2} = \) number of 2-element subsets of \{A,B,C,D,E\}

 • 2-element subsets containing A: \(\binom{4}{1} \)
 \{A,B\}, \{A,C\}, \{A,D\}, \{A,E\}

 • 2-element subsets not containing A: \(\binom{4}{2} \)
 \{B,C\}, \{B,D\}, \{B,E\}, \{C,D\}, \{C,E\}, \{D,E\}

• Therefore, \(\binom{5}{2} = \binom{4}{1} + \binom{4}{2} \)
Combinations

\[
\binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1}, \quad n > r > 0
\]

\[
\binom{n}{n} = 1
\]

\[
\binom{n}{0} = 1
\]

Can also show that \(\binom{n}{r} = \frac{n!}{r!(n-r)!} \)

Pascal’s triangle

\[
\begin{array}{ccccccccc}
0 & & & & & & & & \\
1 & & & & & & & & \\
1 & 1 & & & & & & & \\
2 & 2 & 2 & & & & & & \\
3 & 3 & 3 & 3 & & & & & \\
4 & 4 & 4 & 4 & 4 & & & & \\
\end{array}
\]

\[
\begin{array}{ccccccccc}
1 & & & & & & & & \\
1 & 1 & & & & & & & \\
1 & 2 & 1 & & & & & & \\
1 & 3 & 3 & 1 & & & & & \\
1 & 4 & 6 & 4 & 1 & & & & \\
\end{array}
\]
Binomial Coefficients

- Combinations are also called binomial coefficients because they appear as coefficients in the expansion of the binomial \((x+y)^n\)

\[(x + y)^n = \binom{n}{0}x^n + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^2 + \cdots + \binom{n}{n}y^n\]
Multiple Base Cases

\[
\binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1}, \quad n > r > 0
\]

\[
\binom{n}{n} = 1
\]

\[
\binom{n}{0} = 1
\]

Two base cases

• Coming up with right base cases can be tricky!

• General idea:
 – Determine argument values for which recursive case does not apply
 – Introduce a base case for each one of these
Recursive Program for Combinations

\[
\binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1}, \quad n > r > 0
\]
\[
\binom{n}{n} = 1
\]
\[
\binom{n}{0} = 1
\]

static int combs(int n, int r) {
 //assume n>=r>=0
 if (r == 0 || r == n) return 1; //base cases
 else return combs(n-1,r) + combs(n-1,r-1);
}
Positive Integer Powers

- \(a^n = a \cdot a \cdot a \cdots a \) (n times)

- Alternate description:
 - \(a^0 = 1 \)
 - \(a^{n+1} = a \cdot a^n \)

```java
static int power(int a, int n) {
    if (n == 0) return 1;
    else return a*power(a,n-1);
}
```
A Smarter Version

• Power computation:
 – \(a^0 = 1 \)
 – If \(n \) is nonzero and even, \(a^n = (a^{n/2})^2 \)
 – If \(n \) is odd, \(a^n = a \cdot (a^{n/2})^2 \)
 • Java note: If \(x \) and \(y \) are integers, “\(x/y \)” returns the integer part of the quotient

• Example:
 – \(a^5 = a \cdot (a^{4/2})^2 = a \cdot (a^2)^2 = a \cdot ((a^2/2)^2)^2 = a \cdot (a^2)^2 \)
 – Note: this requires 3 multiplications rather than 5!

• What if \(n \) were larger?
 – Savings would be more significant
 – Straightforward computation: \(n \) multiplications
 – Smarter computation: \(\log(n) \) multiplications
Smarter Version in Java

• $n = 0$: $a^0 = 1$
• n nonzero and even: $a^n = (a^{n/2})^2$
• n nonzero and odd: $a^n = a \cdot (a^{n/2})^2$

```java
static int power(int a, int n) {
    if (n == 0) return 1;
    int halfPower = power(a, n/2);
    if (n%2 == 0) return halfPower*halfPower;
    return halfPower*halfPower*a;
}
```

• The method has two parameters and a local variable
• Why aren’t these overwritten on recursive calls?
Implementation of Recursive Methods

• Key idea:
 – Use a stack to remember parameters and local variables across recursive calls
 – Each method invocation gets its own stack frame

• A stack frame contains storage for
 – Local variables of method
 – Parameters of method
 – Return info (return address and return value)
 – Perhaps other bookkeeping info
Stacks

- Like a stack of plates
- You can push data on top or pop data off the top in a LIFO (last-in-first-out) fashion
- A queue is similar, except it is FIFO (first-in-first-out)

<table>
<thead>
<tr>
<th>top element</th>
<th>2nd element</th>
<th>3rd element</th>
<th>...</th>
<th>...</th>
<th>bottom element</th>
</tr>
</thead>
</table>

stack grows

top-of-stack
pointer
• A new stack frame is **pushed** with each recursive call

• The stack frame is **popped** when the method returns
 → Leaving a return value (if there is one) on top of the stack
static int power(int a, int n) {
 if (n == 0) return 1;
 int hP = power(a, n/2);
 if (n%2 == 0) return hP*hP;
 return hP*hP*a;
}
How Do We Keep Track?

- At any point in execution, many invocations of *power* may be in existence
 - Many stack frames (all for *power*) may be in Stack
 - Thus there may be several different versions of the variables *a* and *n*

- How does processor know which location is relevant at a given point in the computation?
 → **Frame Base Register**
 - When a method is invoked, a frame is created for that method invocation, and FBR is set to point to that frame
 - When the invocation returns, FBR is restored to what it was before the invocation

- How does machine know what value to restore in the FBR?
 - This is part of the return info in the stack frame
Computational activity takes place only in the topmost (most recently pushed) stack frame
Problem Solving by Search

• Idea: Try all possible sequences of moves
• Pseudocode:
 – DepthFirstSearch(state)
 IF isSolution(state) THEN
 RETURN(true)
 WHILE hasNextLegalMove(state)
 next= getNextLegalMove(state)
 IF DepthFirstSearch(next) THEN
 RETURN(true)
 RETURN(false)

• Caution: You might get a program that does not terminate, if you have
 – move sequences that can be infinitely long
 – move sequences that get you back to the same state (cycles)
Conclusion

• Recursion is a convenient and powerful way to define functions

• Problems that seem insurmountable can often be solved in a “divide-and-conquer” fashion:
 – Reduce a big problem to smaller problems of the same kind, solve the smaller problems
 – Recombine the solutions to smaller problems to form solution for big problem

• Important applications:
 – Parsing (next lecture)
 – Collision detection