Median Finding Algorithm

Submitted By:
Arjun Saraswat
Nishant Kapoor
Problem Definition

Given a set of "n" unordered numbers we want to find the "k th" smallest number. (k is an integer between 1 and n).
A Simple Solution

- A simple sorting algorithm like heapsort will take Order of $O(n \log_2 n)$ time.

<table>
<thead>
<tr>
<th>Step</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sort n elements using heapsort</td>
<td>$O(n \log_2 n)$</td>
</tr>
<tr>
<td>Return the k^{th} smallest element</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Total running time</td>
<td>$O(n \log_2 n)$</td>
</tr>
</tbody>
</table>
Linear Time selection algorithm

- Also called Median Finding Algorithm.
- Find k^{th} smallest element in $O(n)$ time in worst case.
- Uses Divide and Conquer strategy.
- Uses elimination in order to cut down the running time substantially.
Steps to solve the problem

- **Step 1:** If n is small, for example $n < 6$, just sort and return the k^{th} smallest number in constant time i.e; $O(1)$ time.

- **Step 2:** Group the given number in subsets of 5 in $O(n)$ time.
Step 3: Sort each of the group in $O(n)$ time. Find median of each group.

Given a set

$\{2, 5, 9, 19, 24, 54, 5, 87, 9, 10, 44, 32, 21, 13, 24, 18, 26, 16, 19, 25, 39, 47, 56, 71, 91, 61, 44, 28, \ldots \}$ having n elements.
Arrange the numbers in groups of five

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>54</td>
<td>44</td>
<td>4</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>32</td>
<td>18</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>87</td>
<td>21</td>
<td>26</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>13</td>
<td>16</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>10</td>
<td>2</td>
<td>19</td>
<td>71</td>
<td></td>
</tr>
</tbody>
</table>
Find median of N/5 groups

\[
\begin{array}{cccccc}
\text{Median of each group} & 2 & 5 & 2 & 4 & 25 \\
9 & 13 & 16 & 39 & \\
9 & 10 & 21 & 18 & 47 \\
19 & 54 & 32 & 19 & 56 \\
24 & 87 & 44 & 26 & 71 \\
\end{array}
\]
Find the Median of each group

Find the median of medians

Find m, the median of medians
Find the sets L and R

Compare each n-1 elements with the median m and find two sets L and R such that every element in L is smaller than M and every element in R is greater than m.

\[\frac{3n}{10} < L < \frac{7n}{10} \quad \text{and} \quad \frac{3n}{10} < R < \frac{7n}{10} \]
Description of the Algorithm step

- If \(n \) is small, for example \(n < 6 \), just sort and return the \(k \) the smallest number. (Bound time - 7)
- If \(n > 5 \), then partition the numbers into groups of 5. (Bound time \(n/5 \))
- Sort the numbers within each group. Select the middle elements (the medians). (Bound time - \(7n/5 \))
- Call your "Selection" routine recursively to find the median of \(n/5 \) medians and call it \(m \). (Bound time - \(T_{n/5} \))
- Compare all \(n-1 \) elements with the median of medians \(m \) and determine the sets \(L \) and \(R \), where \(L \) contains all elements <\(m \), and \(R \) contains all elements >\(m \). Clearly, the rank of \(m \) is \(r = |L|+1 \) (\(|L| \) is the size or cardinality of \(L \)). (Bound time - \(n \))
Contd....

- If \(k = r \), then return \(m \)
- If \(k < r \), then return \(k^{th} \) smallest of the set \(L \). (Bound time \(T_{7n/10} \))
- If \(k > r \), then return \(k-r^{th} \) smallest of the set \(R \).
Recursive formula

\[T(n) = O(n) + T(n/5) + T(7n/10) \]

We will solve this equation in order to get the complexity.

We assume that \(T(n) < Cn \)

\[\begin{align*}
T(n) &= an + T(n/5) + T(7n/10) \\
Cn &\geq T(n/5) + T(7n/10) + an \\
Cn &\geq Cn/5 + C*7n/10 + an \\
C &\geq 9C/10 + a \\
C/10 &\geq a \\
C &\geq 10a
\end{align*} \]

There is such a constant that exists....so \(T(n) = O(n) \)
Why group of 5 why not some other term??

- If we divide elements into groups of 3 then we will have
 \[T(n) = O(n) + T(n/3) + T(2n/3) \] so \(T(n) > O(n) \).....
- If we divide elements into groups of more than 5, the value of constant 5 will be more, so grouping elements in to 5 is the optimal situation.