Prelim tonight!
Analysis of Merge-Sort

Recurrence:
\[T(n) = c + d + e + f + 2T(n/2) + gn + h \quad \leftarrow \text{recurrence} \]
\[T(1) = i \quad \leftarrow \text{base case} \]

How do we solve this recurrence?
Analysis of Merge-Sort

Recurrence:

\[T(n) = c + d + e + f + 2T(n/2) + gn + h \]
\[T(1) = i \]

First, simplify by dropping lower-order terms

Simplified recurrence:

\[T(n) = 2T(n/2) + cn \]
\[T(1) = d \]

How do we find the solution?
Solving Recurrences

- Unfortunately, solving recurrences is like solving differential equations
 - No general technique works for all recurrences

- Luckily, can get by with a few common patterns

- You will learn some more techniques in CS 2800
Analysis of Merge-Sort

• Recurrence for MergeSort
 ▪ $T(n) = 2T(n/2) + cn$
 ▪ $T(2) = 2c$
 ▪ Solution is $T(n) = O(n \log n)$

• Proof: strong induction on n
• Show that
 $T(2) \leq 2c$
 $T(n) \leq 2T(n/2) + cn$
 imply
 $T(n) \leq cn \log n$

• Basis
 $T(2) \leq 2c = c \cdot 2 \log 2$

• Induction step
 $T(n) \leq 2T(n/2) + cn$
 $\leq 2(cn/2 \log n/2) + cn$ (IH)
 $= cn (\log n - 1) + cn$
 $= cn \log n$
Solving Recurrences

- Recurrences are important when using divide & conquer to design an algorithm

- Solution techniques:
 - Can sometimes change variables to get a simpler recurrence
 - Make a guess, then prove the guess correct by induction
 - Build a recursion tree and use it to determine solution
 - Can use the Master Method
 - A “cookbook” scheme that handles many common recurrences

To solve $T(n) = aT(n/b) + f(n)$
compare $f(n)$ with $n^{\log_b a}$

- Solution is $T(n) = O(f(n))$ if $f(n)$ grows more rapidly
- Solution is $T(n) = O(n^{\log_b a})$ if $n^{\log_b a}$ grows more rapidly
- Solution is $T(n) = O(f(n) \log n)$ if both grow at same rate

- Not an exact statement of the theorem – $f(n)$ must be “well-behaved”
Recurrence Examples

- $T(n) = T(n - 1) + 1 \quad \rightarrow \quad T(n) = O(n)$ \quad Linear Search

- $T(n) = T(n - 1) + n \quad \rightarrow \quad T(n) = O(n^2)$ \quad QuickSort worst-case

- $T(n) = T(n/2) + 1 \quad \rightarrow \quad T(n) = O(\log n)$ \quad Binary Search

- $T(n) = T(n/2) + n \quad \rightarrow \quad T(n) = O(n)$

- $T(n) = 2T(n/2) + n \quad \rightarrow \quad T(n) = O(n \log n)$ \quad MergeSort

- $T(n) = 2T(n - 1) \quad \rightarrow \quad T(n) = O(2^n)$
<table>
<thead>
<tr>
<th>(n)</th>
<th>(2^n)</th>
<th>(n!)</th>
<th>(n^n)</th>
<th>(n \log n)</th>
<th>(5n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1024</td>
<td>3.6 million</td>
<td>10 billion</td>
<td>(\sim 85)-digit number</td>
<td>(\sim 500)</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>a 16-digit number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>a 31-digit number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td>a 91-digit number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td>a 302-digit number</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- protons in the known universe ~ 126 digits
- \(\mu \text{sec} \) since the big bang ~ 24 digits

- Source: D. Harel, *Algorithmics*
How long would it take @ 1 instruction / µsec?

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>20</th>
<th>50</th>
<th>100</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>n^2</td>
<td>$1/10,000$ sec</td>
<td>$1/2500$ sec</td>
<td>$1/400$ sec</td>
<td>$1/100$ sec</td>
<td>$9/100$ sec</td>
</tr>
<tr>
<td>n^5</td>
<td>$1/10$ sec</td>
<td>3.2 sec</td>
<td>5.2 min</td>
<td>2.8 hr</td>
<td>28.1 days</td>
</tr>
<tr>
<td>2^n</td>
<td>$1/1000$ sec</td>
<td>1 sec</td>
<td>35.7 yr</td>
<td>400 trillion centuries</td>
<td>a 75-digit number of centuries</td>
</tr>
<tr>
<td>n^n</td>
<td>2.8 hr</td>
<td>3.3 trillion years</td>
<td>a 70-digit number of centuries</td>
<td>a 185-digit number of centuries</td>
<td>a 728-digit number of centuries</td>
</tr>
</tbody>
</table>

- The big bang was 15 billion years ago ($5\cdot10^{17}$ secs)

- Source: D. Harel, Algorithmics
The Fibonacci Function

• Mathematical definition:
 \[\text{fib}(0) = 0 \]
 \[\text{fib}(1) = 1 \]
 \[\text{fib}(n) = \text{fib}(n-1) + \text{fib}(n-2), \quad n \geq 2 \]

• Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, …

```c
int fib(int n) {
    if (n == 0 || n == 1) return n;
    else return fib(n-1) + fib(n-2);
}
```
Recursive Execution

```c
int fib(int n) {
    if (n == 0 || n == 1) return n;
    else return fib(n-1) + fib(n-2);
}
```

Execution of fib(4):

```
  fib(4)
     /\         /\         /\         /\         /\   
   /   \       /   \       /   \       /   \   
  fib(3) fib(2) fib(1) fib(0)
     /\       /\       /\       /\     
    /   \   /   \   /   \   /   \   
   fib(2) fib(1) fib(1) fib(0)
      /\       /\       /\       /\   
     /   \   /   \   /   \   /   \   
    fib(1) fib(0)
```

The Fibonacci Recurrence

```c
int fib(int n) {
    if (n == 0 || n == 1) return n;
    else return fib(n-1) + fib(n-2);
}
```

\[T(0) = c \]
\[T(1) = c \]
\[T(n) = T(n – 1) + T(n – 2) + c \]

- Solution is exponential in \(n \)
- But not quite \(O(2^n) \)...
The Golden Ratio

\[\varphi = \frac{a+b}{b} = \frac{b}{a} \]

\[\varphi^2 = \varphi + 1 \]

\[\varphi = \frac{1 + \sqrt{5}}{2} \]

= 1.618...

The ratio of sum of sides \((a+b)\) to longer side \((b)\) =

The ratio of longer side \((b)\) to shorter side \((a)\)
Fibonacci Recurrence is $O(\varphi^n)$

• want to show $T(n) \leq c\varphi^n$
• have $\varphi^2 = \varphi + 1$
• multiplying by $c\varphi^n$, $c\varphi^{n+2} = c\varphi^{n+1} + c\varphi^n$

• Basis:
 • $T(0) = c = c\varphi^0$
 • $T(1) = c \leq c\varphi^1$

• Induction step:
 • $T(n+2) = T(n+1) + T(n) \leq c\varphi^{n+1} + c\varphi^n = c\varphi^{n+2}$
Can We Do Better?

- Number of times loop is executed? \(n - 1 \)
- Number of basic steps per loop? Constant
- Complexity of iterative algorithm = \(O(n) \)
- Much, much, much, much, much, much, much, better than \(O(\varphi^n) \!\)!
...But We Can Do Even Better!

- Let f_n denote the n^{th} Fibonacci number
 - $f_0 = 0$
 - $f_1 = 1$
 - $f_{n+2} = f_{n+1} + f_n$, $n \geq 0$

- Note that

\[
\begin{pmatrix}
0 & 1 \\
1 & 1
\end{pmatrix}
\begin{pmatrix}
f_n \\
f_{n+1}
\end{pmatrix}
=
\begin{pmatrix}
f_{n+1} \\
f_{n+2}
\end{pmatrix},
\text{ thus}
\begin{pmatrix}
0 & 1 \\
1 & 1
\end{pmatrix}^n
\begin{pmatrix}
f_0 \\
f_1
\end{pmatrix}
=
\begin{pmatrix}
f_n \\
f_{n+1}
\end{pmatrix}
\]

- Can compute the nth power of a matrix by repeated squaring in $O(\log n)$ time

- Gives complexity $O(\log n)$

- Just a little cleverness got us from exponential to logarithmic!
But We Are Not Done Yet...

- Would you believe constant time?

\[f_n = \frac{\phi^n - \phi'^n}{\sqrt{5}} \]

where \(\phi = \frac{1 + \sqrt{5}}{2} \) \quad \phi' = \frac{1 - \sqrt{5}}{2} \]
Matrix Multiplication in Less Than $O(n^3)$
(Strassen's Algorithm)

- Idea: naive 2 x 2 matrix multiplication takes 8 scalar multiplications, but we can do it in 7:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}\begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} s_1 + s_2 - s_4 + s_6 & s_4 + s_5 \\ s_6 + s_7 & s_2 - s_3 + s_5 - s_7 \end{pmatrix}$$

where

$$s_1 = (b - d)(g + h) \quad s_5 = a(f - h)$$
$$s_2 = (a + d)(e + h) \quad s_6 = d(g - e)$$
$$s_3 = (a - c)(e + f) \quad s_7 = e(c + d)$$
$$s_4 = h(a + b)$$
Now Apply This Recursively – Divide and Conquer!

- Break $2^{n+1} \times 2^{n+1}$ matrices up into 4 $2^n \times 2^n$ submatrices
- Multiply them the same way

\[
\begin{pmatrix}
A & B \\
C & D
\end{pmatrix}
\begin{pmatrix}
E & F \\
G & H
\end{pmatrix}
= \begin{pmatrix}
S_1 + S_2 - S_4 + S_6 & S_4 + S_5 \\
S_6 + S_7 & S_2 - S_3 + S_5 - S_7
\end{pmatrix}
\]

where

\[
\begin{align*}
S_1 &= (B - D)(G + H) \\
S_2 &= (A + D)(E + H) \\
S_3 &= (A - C)(E + F) \\
S_4 &= H(A + B) \\
S_5 &= A(F - H) \\
S_6 &= D(G - E) \\
S_7 &= E(C + D)
\end{align*}
\]
Now Apply This Recursively – Divide and Conquer!

- Gives recurrence $M(n) = 7M(n/2) + cn^2$ for the number of multiplications
- Solution is $M(n) = O(n^{\log 7}) = O(n^{2.81...})$
- Number of additions is $O(n^2)$, bound separately
Is That the Best You Can Do?

- How about 3 x 3 for a base case?
 - best known is 23 multiplications
 - not good enough to beat Strassen

- In 1978, Victor Pan discovered how to multiply 70 x 70 matrices with 143640 multiplications, giving $O(n^{2.795...})$

- Best bound to date (obtained by entirely different methods) is $O(n^{2.376...})$ (Coppersmith & Winograd 1987)

- Best known lower bound is still $\Omega(n^2)$
Moral: Complexity Matters!

- But you are acquiring the best tools to deal with it!