More Graphs

Lecture 22
CS211 - Fall 2006

Adjacency Matrix or Adjacency List?

- **Adjacency Matrix**
 - Uses space $O(n^2)$
 - Can iterate over all edges in time $O(n^2)$
 - Can answer “Is there an edge from u to v?” in $O(1)$ time
 - Better for dense graphs (i.e., lots of edges)

- **Adjacency List**
 - Uses space $O(m+n)$
 - Can iterate over all edges in time $O(m+n)$
 - Can answer “Is there an edge from u to v?” in $O(m_u)$ time
 - Better for sparse graphs (i.e., fewer edges)

Goal: Find Shortest Path in a Graph

- Finding the shortest (min-cost) path in a graph is a problem that occurs often
 - Find the least-cost route between Ithaca and West Lafayette, IN
 - Result depends on our notion of cost
 - Least mileage
 - Least time
 - Cheapest
 - Least boring
 - All of these “costs” can be represented as edge costs on a graph
 - How do we find a shortest path?

Shortest Paths for Unweighted Graphs

```java
bfsDistance(s):
  // $s$ is the start vertex
  // $dist[v]$ is length of $s$-to-$v$ path
  // Initially $dist[v] = \infty$ for all $v$
  $dist[s] = 0$;
  Q.insert(s);
  while (Q nonempty) {
    $v = Q$.get();
    for (each $w$ adjacent to $v$) {
      if ($dist[w] == \infty$) {
        $dist[w] = dist[v]+1$;
        Q.insert(w);
      }
    }
  }
```

Analysis for bfsDistance

- **How many times can a vertex be placed in the queue?**
- **How much time for the for-loop?**
 - Depends on representation
 - Adjacency Matrix: $O(n)$
 - Adjacency List: $O(m)$
 - Time:
 - $O(n^2)$ for adj matrix
 - $O(m+n)$ for adj list

If There are Edge Costs?

- **Idea #1**
 - Add false nodes so that all edge costs are 1
 - But what if edge costs are large?
 - What if the costs aren’t integers?

- **Idea #2**
 - Nothing “interesting” happens at the false nodes
 - Can we just jump ahead to the next real node?
 - Intuition
 - Edges are threads; vertices are beads
 - Pick up at s; mark each node as it leaves the table
 - Rule: always do the closest-to-s node first
 - Use the array $dist[]$ to:
 - Report answers
 - Keep track of what to do next
Dijkstra's Algorithm

- Intuition
 - Edges are threads; vertices are beads
 - Pick up at s; mark each node as it leaves the table
- Note: Negative edge-costs are not allowed

\[\text{dijkstra}(s): \]
\[\text{dist}[s] = 0; \]
\[\text{while (some vertices are unmarked)} { \]
\[\quad v = \text{unmarked node with smallest dist}; \]
\[\quad \text{Mark } v; \]
\[\quad \text{for (each } w \text{ adj to } v) { \]
\[\quad \quad \text{dist}[w] = \min\{\text{dist}[w],\text{dist}[v]+c(v,w)\}; \]
\[\quad } \]
\[} \]

Proof for Dijkstra's Algorithm

- Claim: When vertex \(v \) is marked, \(\text{dist}[v] \) is the length of the shortest path from \(s \) to \(v \)
- Proof
 - Suppose there is a shorter path \(P \) from \(s \) to \(v \)
 - Consider the first edge of \(P \) that links a marked vertex to an unmarked vertex
 - Such an edge must exist because we know \(s \) is marked and \(v \) is not
 - Call this edge \((u',v') \)
 - Note that the length of the path from \(s \) to \(u' \) to \(v' \) is less than the length of \(P \)
 - Thus \(v' \) would be chosen in the algorithm instead of \(v \)
 - Contradiction!

Dijkstra's Algorithm using Adj Matrix

- While-loop is done \(n \) times
- Within the loop
 - Choosing \(v \) takes \(O(n) \) time
 - Could do this faster using PQ, but no reason to
 - For-loop takes \(O(n) \) time
- Total time = \(O(n^2) \)

Dijkstra's Algorithm using Adj List

- Looks like we need a PQ
 - Problem: priorities are updated as algorithm runs
 - Can insert pair \((v,\text{dist}[v])\) in PQ whenever \(\text{dist}[v] \) is updated
 - At most \(m \) things in PQ
- Time \(O(n + m \log m) \)
 - Using a more complicated PQ (e.g., Pairing Heap), time can be brought down to \(O(m + n \log n) \)

Dijkstra's Algorithm for Digraphs

- Algorithm works on both undirected and directed graphs without modification
- As before: Negative edge-costs are not allowed

Greedy Algorithms

- Dijkstra's Algorithm is an example of a Greedy Algorithm
- The Greedy Strategy is an algorithm design technique
 - Like Divide & Conquer
 - The greedy algorithms are used to solve optimization problems
 - The goal is to find the best solution
 - Works when the problem has the greedy choice property
 - A global optimum can be reached by making locally optimum choices
- Problem: Given an amount of money, find the smallest number of coins to make that amount
- Solution: Use a Greedy Algorithm
 - Give as many large coins as you can
 - This greedy strategy produces the optimum number of coins for the US coin system
 - Different money system ⇒ greedy strategy may fail
 - Example: suppose the US introduced a 4¢ coin