More Graphs

Lecture 21
CS211 – Fall 2005

Announcements

• Upcoming talk
 • “The Many Careers of a Computer Scientist”
 • Or how a Computer Science degree empowers you to do much more than code
 • Dan Huttenlocher, Professor in the Department of Computer Science and Johnson Graduate School of Management
 • 5:00 PM, Wednesday, November 9th
 • Upson Lounge
 • FREE PIZZA!

• ACSU (Association of Computer Science Undergraduates)

Prelim 2 Reminder

• Prelim 2
 • Tuesday, Nov 15, 7:30-9pm
 • One week from today!
 • Topics: all material through Nov 1
 • Does not include
 • Graphs
 • GUIs in Java
 • Note that this week’s Section meetings are last before the exam
 • Exam conflicts
 • Email Kelly Patwell (ASAP)

• Prelim 2 Review Session
 • Sunday, Nov 13,1-3:00pm, Kimball B11
 • See Exams on course website for more information
 • Individual appointments are available if you cannot attend the review session (email one TA to arrange appointment)
 • Old exams are available for review on the course website

Implementing Digraphs

• Adjacency Matrix
 \[g[u][v] \] is true iff there is an edge from \(u \) to \(v \)

• Adjacency List
 The list for \(u \) contains \(v \) iff there is an edge from \(u \) to \(v \)

Shortest Paths for Unweighted Graphs

\begin{align*}
\text{bfsDistance(s):} & \\
& // s is the start vertex \\
& // dist[v] is length of s-to-v path \\
& // Initially dist[v] = \infty for all v \\
& dist[s] = 0; \\
& Q.insert(s); \\
& \text{while (Q nonempty) } \{ \\
& \quad v = Q.get(); \\
& \quad \text{for (each w adjacent to } v \text{) } \{ \\
& \quad \quad \text{if (dist[w] = \infty) } \{ \\
& \quad \quad \quad \text{dist[w] = dist[v]+1; } \\
& \quad \quad \quad Q.insert(w); \\
& \quad \quad \} \\
& \quad \} \\
& \}
\end{align*}

Analysis for bfsDistance

• How many times can a vertex be placed in the queue?
 • Depends on representation
 • Adjacency Matrix: \(O(n) \)
 • Adjacency List: \(O(m) \)

• How much time for the for-loop?
 • Depends on representation
 • Adjacency Matrix: \(O(n) \)
 • Adjacency List: \(O(m) \)

• Time:
 • \(O(n^2) \) for adj matrix
 • \(O(m+n) \) for adj list
If There are Edge Costs?

- Idea #1
 - Add false nodes so that all edge costs are 1
- Idea #2
 - Nothing “interesting” happens at the false nodes
 - But what if edge costs are large?
 - What if the costs aren’t integers?

Dijkstra’s Algorithm

- Initial: Edges are threads, vertices are beads
 - Pick up at s, mark each node as it leaves the table
 - Rule: always do the closest (real) node first
- Report answers
- Keep track of what to do next

Dijkstra’s Algorithm using Adj Matrix

- While-loop is done n times
- Within the loop
 - Choosing v takes O(1) time
 - Could do this faster using PQ, but no reason to
 - For-loop takes O(n) time
- Total time = O(n^2)

Dijkstra’s Algorithm using Adj List

- Looks like we need a PQ
 - Problem: priorities are updated as algorithm runs
 - Can insert pair (v,dist[v]) in PQ whenever dist[v] is updated
 - At most m things in PQ
- Time O(n + m log m)
- Using a more complicated PQ (e.g., Pairing Heap), can be brought down to O(m + n log n)

Dijkstra’s Algorithm for Digraphs

- Algorithm works on both undirected and directed graphs without modification
 - As before: Negative edge-costs are not allowed
Greedy Algorithms

- Dijkstra’s Algorithm is an example of a Greedy Algorithm
- The Greedy Strategy is an algorithm design technique
 - Like Divide & Conquer
- The Greedy Strategy is used to solve optimization problems
 - The goal is to find the best solution
- Works when the problem has the greedy-choice property
 - A global optimum can be reached by making locally optimum choices

- Problem: Given an amount of money, find the smallest number of coins to make that amount
- Solution: Use a Greedy Algorithm
 - Give as many large coins as you can
 - This greedy strategy produces the optimum number of coins for the US coin system
 - For example: suppose the US introduces a 4¢ coin

Minimum Spanning Trees

Definition

- A spanning tree of an undirected graph G is a tree whose nodes are the vertices of G and whose edges are a subset of the edges of G

Definition

- A Minimum Spanning Tree (MST) for a weighted graph G is the spanning tree of least cost (sum of edge-weights)
 - Alternately, an MST can be defined as the least-cost set of edges so that all the vertices are connected
 - This has to be a tree... Why?
 - A greedy strategy works for this problem
 - Add vertices one at a time
 - Always add the one that is closest to the current tree
 - This is called Prim’s Algorithm

An Example Graph and Its MST

![Graph with MST](image)

Prim’s Algorithm

- \(v \) is the start vertex
- \(c(i,j) \) is the cost from \(i \) to \(j \)
- Initially, vertices are unmarked
- \(\text{dist}[v] \) is length of smallest tree-to-\(v \) path
 - Initially, \(\text{dist}[v] = \infty \), for all \(v \)

\[
\text{prim}(s):
\begin{align*}
\text{dist}[s] &= 0; \\
\text{while (some vertices are unmarked)} { & \\
\text{v} &= \text{unmarked vertex with smallest dist}; \\
\text{Mark v}; \\
\text{for (each w adj to v)} { & \\
\text{dist}[w] &= \min \{ \text{dist}[w], c(v,w) \}; \\
}\}
\end{align*}
\]

- Runtime analysis
 - \(O(v^2) \) for adj matrix
 - While-loop is executed \(v \) times
 - For-loop takes \(O(v) \) time
 - \(O(c = v \cdot \log v) \) for adj list
 - Use a PQ
 - Regular PQ produces time \(O(v + e \log e) \)
 - Can improve to \(O(c + v \log v) \) by using fancier heap

Similar Code Structures

while (some vertices are unmarked) {
 v = best of unmarked vertices;
 Mark v;
 for (each w adj to v)
 Update w;
}

- bfsDistance
 - \(\text{best} \): next in queue
 - \(\text{update} \): \(\text{dist}[w] = \text{dist}[v]+1 \)
- dijkstra
 - \(\text{best} \): next in PQ
 - \(\text{update} \): \(\text{dist}[w] = \min \{ \text{dist}[w], \text{dist}[v]+c(v,w) \} \)
- prim
 - \(\text{best} \): next in PQ
 - \(\text{update} \): \(\text{dist}[w] = \min \{ \text{dist}[w], c(v,w) \} \)

Remembering Your Choices

- How can you remember which choices were made?
 - Whenever \(\text{dist}[w] \) is updated we can remember the current \(v \) by using \(\text{parent}[w] = v \);
 - Can use the parent info to construct the BFS tree, the shortest path tree, or the minimum spanning tree

while (some vertices are unmarked) {
 v = best of unmarked vertices;
 Mark v;
 for (each w adj to v)
 if (w changed) parent[w] = v;
}

- Can use the parent info to construct the BFS tree, the shortest path tree, or the minimum spanning tree
Depth-First Search

- Follow edges depth-first starting from an arbitrary vertex s, using a Stack to remember where you came from
- When you encounter a vertex previously visited, or there are no outgoing edges, retreat and try another path
- Eventually visit all vertices reachable from s
- If there are still unvisited vertices, repeat

Easy to see this takes $O(m)$ time
Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search
Depth-First Search

• Same as BFS, except we use a Stack instead of a Queue to determine which edge to explore next

• Can also implement DFS recursively
 ▪ The Stack is represented implicitly in the Stack Frames created by the recursive calls