Minimal Spanning Trees
Spanning Tree

• Assume you have an undirected graph \(G = (V,E) \)

• Spanning tree of graph \(G \) is tree \(T = (V,E_T \subseteq E, R) \)
 – Tree has same set of nodes
 – All tree edges are graph edges
 – Root of tree is \(R \)

• Think: “smallest set of edges needed to connect everything together”
Spanning trees

Breadth-first Spanning Tree

Depth-first spanning tree
Property 1 of spanning trees

- Graph: $G = (V,E)$, Spanning tree: $T = (V,E_T,R)$
- For any edge c in G but not in T, there is a simple cycle containing only edge c and edges in spanning tree.

For example:
- Edge (I,H): simple cycle is (I,H,G,I)
- Edge (H,C): simple cycle is (H,C,B,A,G,H)

Proof?
Proof of Property 1

- Edge is c goes u \leftrightarrow v
- If u is ancestor of v, result is easy (u \leftrightarrow v, then v \leftrightarrow u form a cycle)
- Otherwise, there are paths root \leftrightarrow u and root \leftrightarrow v (b/c it is a tree). Let p be the node furthest from root on both of these paths. Now p \leftrightarrow u, then u \leftrightarrow v, then v \leftrightarrow p form a cycle.

edge (I,H):
 p is node G
 simple cycle is (I,H,G,I)

edge (H,C):
 p is node A
 simple cycle is (H,C,B,A,G,H)
Useful lemma about trees

• In any tree $T = (V,E)$, $|E| = |V| - 1$
 - Proof?
Useful lemma about trees

- In any tree $T = (V,E)$, $|E| = |V| - 1$
 - Proof: (by induction on $|V|$)
 * If $|V| = 1$, we have the trivial tree containing a single node, and the result is obviously tree.
 * Assume result is true for all trees for which $1 \leq |V| < n$, and consider a tree $S = (E_S, V_S)$ with $|V| = n$. Such a tree must have at least one leaf node; removing the leaf node and edge incident on that node gives a smaller tree T with less than n nodes. By inductive assumption, $|E_T| = |V_T| + 1$. Since $|E_S| = |E_T| + 1$ and $|V_S| = |V_T| + 1$, the required result follow.

- Converse also true: an undirected graph $G = (V,E)$ which
 (1) has a single connected component, and
 (2) has $|E| = |V| - 1$
 \rightarrow must be a tree.
Property 2 of spanning trees

- Graph: $G = (V,E)$, Spanning tree: $T = (V,E_T,R)$
- For any edge c in G but not in T, there is a simple cycle Y containing only edge c and edges in spanning tree.
- Moreover, inserting edge c into T and deleting any edge in Y gives another spanning tree T'.

Example:

edge (H,C):
- simple cycle is (H,C,B,A,G,H)
- adding (H,C) to T and deleting (A,B) gives another spanning tree
Proof of Property 2 - Outline

• T’ is a connected component.
 - Proof?

• In T’, numbers of edges = number of nodes – 1
 - Proof ?

• Therefore, from lemma earlier, T’ is a tree.
Proof of Property 2

• T' is a connected component.
 - Otherwise, assume node a is not reachable from node b in T'. In T, there must be a path from b to a that contains edge $(s?\ t)$. In this path, replace edge $(s?\ t)$ by the path in T' obtained by deleting $(s?\ t)$ from the cycle Y, which gives a path from b to a. Contradiction, thus a must be reachable from b.

• In T', numbers of edges = number of nodes – 1
 - Proof: by construction of T' and fact that T is a tree. T' is same as T, with one edge removed, one edge added.

• Therefore, from lemma, T' is a tree.
Building BFS/DFS spanning trees

- Use sequence structure as before, but put/get edges, not nodes
 - Get edge \((s,d)\) from structure
 - If \(d\) is not in done set,
 - add \(d\) to done set
 - \((s,d)\) is in spanning tree
 - add out-edges \((d,t)\) to seq structure if \(t\) is not in done set

- Example: BFS (Queue)

 \[
 \text{[(dummy,A)]} \\
 \text{[(A,B),(A,G),(A,F)]} \\
 \text{[(A,G),(A,F),(B,G),(B,C)]} \ldots
 \]
Weighted Spanning Trees

• Assume you have an undirected graph $G = (V,E)$ with weights on each edge

• Spanning tree of graph G is tree $T = (V,E_T \subseteq E)$
 – Tree has same set of nodes
 – All tree edges are graph edges
 – Weight of spanning tree = sum of tree edge weights

• Minimal Spanning Tree (MST)
 – Any spanning tree whose weight is minimal
 – In general, a graph has several MST’s
 – Applications: circuit-board routing, networking, etc.
Example

Graph

SSSP tree

Minimal spanning tree
Caution: in general, SSSP tree is not MST

- Intuition:
 - SSSP: fixed start node
 - MST: at any point in construction, we have a bunch of nodes that we have reached, and we look at the shortest distance from any one of those nodes to a new node
Property 3 of minimal spanning trees

- Graph: $G = (V,E)$, Spanning tree: $T = (V,E_T,R)$
- For any edge c in G but not in T, there is a simple cycle Y containing only edge c and edges in spanning tree (already proved).
- Moreover, weight of c must be greater than or equal to weight of any edge in this cycle.
 - Proof?

Edge ($G \rightarrow H$): 5
Cycle edges: ($G \rightarrow I$), ($I \rightarrow E$), ($E \rightarrow D$), ($H \rightarrow D$) all have weights less than ($G \rightarrow H$)
Property 3 of minimal spanning trees

• Graph: $G = (V,E)$, Spanning tree: $T = (V,E_T,R)$

• Edge c ... weight of c must be greater than or equal to weight of any edge in this cycle.

• Proof: Otherwise, let d be an edge on cycle with lower weight. Construct T' from T by removing c and adding d. T' is less weight than T, so T not minimal. Contradiction., so d can’t exist.

Edge($G \rightarrow H$): 5
Cycle edges: ($G \rightarrow I$), ($I \rightarrow E$), ($E \rightarrow D$),($H \rightarrow D$) all have weights less than ($G \rightarrow H$)
Building Minimal Spanning Trees

• Prim’s algorithm: simple variation of Dijkstra’s SSSP algorithm
 – Change Dijkstra’s algorithm so the priority of bridge \((f \rightarrow n)\) is \(\text{length}(f,n)\) rather than \(\text{minDistance}(f) + \text{length}(f,n)\)
 – Intuition: Starts with any node. Keep adding smallest border edge to expand this component.

• Algorithm produces minimal spanning tree!
Prim’s MST algorithm

Tree MST = empty tree;
Heap h = new Heap();
//any node can be the root of the MST
h.put((dummyRoot → anyNode), 0);
while (h is not empty) {
 get minimum priority (= length) edge (t→f);
 if (f is not lifted) {
 add (t→f) to MST;//grow MST
 make f a lifted node;
 for each edge (f→n)
 if (n is not lifted)
 h.put((f→n), length(f,n));
 }
}
Steps of Prim’s algorithm

[((dummy \(\rightarrow\) A), 0)]

[] add (dummy \(\rightarrow\) A) to MST

[((A \(\rightarrow\) B), 2), ((A \(\rightarrow\) G), 5), ((A \(\rightarrow\) F), 9)]

[((A \(\rightarrow\) G), 5), ((A \(\rightarrow\) F), 9)] add (A \(\rightarrow\) B) to MST

[((A \(\rightarrow\) G), 5), ((A \(\rightarrow\) F), 9), (B \(\rightarrow\) G), 6), ((B \(\rightarrow\) C), 4)]

[((A \(\rightarrow\) G), 5), ((A \(\rightarrow\) F), 9), (B \(\rightarrow\) G), 6)] add (B \(\rightarrow\) C) to MST

[((A \(\rightarrow\) G), 5), ((A \(\rightarrow\) F), 9), (B \(\rightarrow\) G), 6), ((C \(\rightarrow\) H), 5), ((C \(\rightarrow\) D), 2)]

............
Property of Prim’s algorithm

• At each step of the algorithm, we have a spanning tree for “lifted” nodes.
• This spanning tree grows by one new node and edge at each iteration.
Proof of correctness (part 1)

• Suppose the algorithm does not produce MST.
• Each iteration adds one new node and edge to tree.
• First iteration adds the root to tree, and at least that step is “correct”.
 – “Correct” means partial spanning tree built so far can be extended to an MST.
• Suppose first k steps were correct, and then algorithm made the wrong choice.
 – Partial spanning tree P built by first k steps can be extended to an MST M
 – Step (k+1) adds edge (u→v) to P, but resulting tree cannot be extended to an MST
 – Where to go from here?
Proof (contd.)

• Consider simple cycle formed by adding $(u \rightarrow v)$ to M. Let p be the lowest ancestor of v in M that is also in P, and let q be p’s child in M that is also an ancestor of v. So $(p \rightarrow q)$ is a bridge edge at step $(k+1)$ as is $(u \rightarrow v)$. Since our algorithm chose $(u \rightarrow v)$ at step $(k+1)$, weight$(u \rightarrow v)$ is less than or equal to weight$(p \rightarrow q)$.

• From Property (3), weight of $(u \rightarrow v)$ must be greater than or equal to weight$(p \rightarrow q)$.

![Diagram](image-url)
Proof (contd.)

- Therefore, weight(p→q) = weight(u→v).
- This means that the tree obtained by taking M, deleting edge (p→q) and adding edge (u→v) is a minimal spanning tree as well, contradicting the assumption that there was no MST that contained the partial spanning tree obtained after step (k+1).
- Therefore (by induction!), our algorithm is correct.
Complexity of Prim’s Algorithm

• Every edge is examined once and inserted into PQ when one of its two end points is first lifted.
• Every edge is examined again when its other end point is lifted.
• Number of insertions and deletions into PQ is $|E| + 1$
• Complexity $= O(|E|\log(|E|))$
• Same as Dijkstra’s (of course)
Dijkstra’s algorithm and Prim’s algorithm are examples of greedy algorithms:
 – making optimal choice at each step of the algorithm gives globally optimal solution

In most problems, greedy algorithms do not yield globally optimal solutions
 – (eg) TSP (Travelling Salesman Problem)
 – (eg) greedy algorithm for puzzle graph search: at each step, choose move that minimizes the number of tiles that are out of position
 • Problem: we can get stuck in “local” minima and never find the global solution