ANNOUNCEMENTS:
• course almost done: L28 is summary, evals
• A6, A7 due soon
• end of regular consulting: Fri, 5/1
• special hours to finish regrades, pick up work will be announced on the website
• consulting: forms in 303 Upson, starting 1PM today
• final exam info: Final Exam (on website)
 (review info, prior exam posted soon)
• final exam conflicts? see website; due Friday 5/2!

OVERVIEW:
• shortest path algorithm for weighted graph
 (Dijkstra’s algorithm)
• all pairs source shortest path
 (Floyd’s algorithm)
• minimum cost spanning trees
 (Prim’s algorithm, Kruskal’s algorithm)

1. Shortest Path for Weighted Graphs

1.1 Assumptions
• could be directed or undirected
• non-negative weights

1.2 Dijkstra’s Algorithm
• very famous
• example of greedy algorithm
• on-line demo:
 http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/dijkstra/Dijkstra.shtml

1.3 Wordy Gist: Based ON BFS
• BFS: visit the nodes by “levels” or “layers”
 - put new (unvisited) nodes in Q
 - look at each node at each layer
 - process each node and repeat
 - don’t re-process already-visited nodes
• New twist!
 - don’t treat all unvisited nodes as equals
 - want smallest accumulation of weights
 - so, need to sum weights along the way and maybe
 pick a different node than what’s in front of the Q

1.4 Physical Gist

Want shortest path from A to I
Imagine graph is weights and strings, in
which strings are cut to scaled lengths
Pick up weights one at a time

Pick up A
String becomes tight first at B
record: A→B

Pick up B
String becomes tight first at E
record: A→B→E
1.5 Pseudocode Gist: Version 1

- Longish algorithm that uses cost in organizing priority queue to choose nodes
- a bit expanded on “wordy gist” from before:
 - pick the highest priority node (the smallest dist)
 - tag the node, record previous, update cost:
 - PQ element: <node, accumulating cost>
 - repeat until no more PQ or no more unvisited nodes
 (note: tagging happens after extract from PQ)
- Visualization:

```
String now becomes tighter at D
Why? After E comes F or H, each of which is longer than D
record: A→D
We could have gotten to E via A
```

```
Pick up D, followed by F
But, G will be in “next round”
so, record: A→D→G
```

```
Eventually:
record: A→D→G→H→I
Forms a tree
```

1.6 Code Gist: Version 1

```java
// from dijkstra1 in Digraph.java:
resetVertices();
boolean done = false;
SeqStructure toDo = new Heap(edgeCount); // use min heap!
SeqStructure path = new QueueAsList(); // should use stack
Vertex originVertex = (Vertex)verticies.get(origin);
Vertex endVertex = (Vertex)verticies.get(end);
originVertex.setPrev(null);
toDo.put(new MinPQElement(originVertex,0));
while(!done && !toDo.isEmpty()) {
    MinPQElement entry = (MinPQElement) toDo.get();
    Vertex currentVertex = (Vertex) entry.getItem();
    // code not shown
}
path.put(endVertex);
while(endVertex.hasPrev()) {
    endVertex = endVertex.getPrev();
    path.put(endVertex);
} // end while
return path;
```

1.7 Pseudocode Gist: Version 2

- Data:
 - s: start vertex
 - c(i,j): cost from i to j
 - dist(n): distance from s to n (initially \(\infty\))
 - PQ to store neighboring nodes and choose the one with min cost at each “layer”
 (note: PQ size is edgeCount -> max # of adj nodes)
- Algorithm:

```plaintext
dist(s) <- 0
while (some vertices are unvisited)
    v <- unmarked vertex with smallest dist (get from the PQ)
    tag v
    for each node w adjacent to v
        dist(w) = min(dist(w), dist(v) + c(v,w))
    end for
end while
```
1.8 Code Gist: Version 2

```java
public SeqStructure dijkstra3(Object origin, Object end) {
    resetVertices(Integer.MAX_VALUE);
    SeqStructure todo = new Heap(edgeCount);
    SeqStructure path = new QueueAsList();
    Vertex originVertex = (Vertex) verticies.get(origin);
    Vertex endVertex = (Vertex) verticies.get(end);
    originVertex.setPrev(null);
    originVertex.setCost(0);
    todo.put(new MinPQElement(originVertex, 0));
    while (!todo.isEmpty()) {
        MinPQElement entry = (MinPQElement) todo.get();
        Vertex currentVertex = (Vertex) entry.getItem();
        currentVertex.visit();
        for (Iterator edges = currentVertex.getEdgeIterator();
            edges.hasNext(); ) {
            Edge currentEdge = (Edge) edges.next();
            Vertex nextVertex = currentEdge.getDest();
            int nextCost = currentEdge.getWeight() +
                currentVertex.getCost();
            if (nextVertex.getCost() > nextCost) {
                nextVertex.setCost(nextCost);
                nextVertex.setPrev(currentVertex);
                todo.put(new MinPQElement(nextVertex, nextCost));
            }
        }
    }
    path.put(endVertex);
    while (endVertex.hasPrev()) {
        endVertex = endVertex.getPrev();
        path.put(endVertex);
    }
    return path;
}
```

1.9 Proof Gist

- Induction on iterations of while loop
 - each iteration moves one new node into lifted set
 - do induction on set of nodes ordered in the sequence in which they get put into the lifted set
- Induction:
 - base case: path from origin to self is 0
 - inductive hypothesis: all shortest paths to all nodes currently in the lifted set have been computed correctly
 - inductive hypothesis: the next node that gets lifted is also correct

1.10 Run-time Analysis for Adjacency List

- dominant operation of method is while loop (processing unvisited nodes)
- time for processing each vertex:
 - each vertex processed once
 - all edges from a vertex might be processed
 - so, for each node, add up time for each edge
 - so, $O(|V| + |E|)$ (see BFS time)
- PQ ops?
 - worst case: each edge has a node to queue and dequeue (see for loop and inner if)
 - so, PQ has max length of $|E|
 - from heap: put is $O(\log n)$, get is $O(\log n)$
 - so, adding each edge’s contribution gives $O(|E| \log |E|)$
- total: $O(|V| + |E| \log |E|)$

1.11 Adjacency Matrix

- see DS&A pg 577
- $O(|V|^2 + |E| \log |E|)$

2. All Pairs Shortest Path

2.1 Problem

- given edge weighted graph
- for each pair of vertices find length of shortest path

2.2 One Solution

- run Dijkstra’s algorithm $|V|$ times
- use each vertex as the origin

2.3 Floyd’s Algorithm

- use adjacency matrix
- see 16.4.2 in DS&A
3. Spanning Trees

3.1 Interesting Thing About Traversals

- BFS, DFS don’t repeat -> no cycles
- can backtrack to find a new unvisited node, but won’t repeat it
- what does that look like?
- a rooted tree!
- ex) BFS = \{A,B,D,E,G,H,F,I,C\}

3.2 Spanning Tree

- effectively a subset of a graph:
 - all nodes same as in G
 - tree edges must be graph edges (but nec all!)
 - connected
 - acyclic
- constructing?
 - pick a starting edge
 - add edges with unvisited dest nodes

3.3 Minimal Spanning Tree

- given: undirected, weighted graph
- weight of spanning tree = sum of tree edge weights
- **minimum spanning tree**:
 - any spanning tree with smallest weight
 - could have many such trees

3.4 Application

- see DS&SD pg 899
- find a cheap way to connect a bunch of nodes
 - as in something travelling an entire graph
 - plane needs to travel to a set of cities
 - wants cheapest path to take that still hits all cities

3.5 Compare to SSSP

- SSSP: shortest path to a node
 - what’s cheapest way to get from A to Z using nodes \{A,..,Z\}
- MST: smallest sum of weights connecting each node
 - what’s cheapest way to connect all nodes \{A,..,Z\}?

- weighted, undirected graph

- SSSP for A→C: \{(A,C)\}
 - Tree: \{(A,B), (A,C)\}

- MST for graph
 - Tree: \{(A,B), (B,C)\}
3.6 Prim’s Algorithm
- modify Dijsktra’s Algorithm:
 - put edges in PQ
 - associate edges with length of edge (don’t add costs)
 - otherwise, algorithm is the same

3.7 Kruskal’s Algorithm
- add edges by increasing order of weights
- not allowed to add edges that form cycles
- see DS&A 16.5.2

4. Exercises
- Modify the heap code to use a minimum heap.
- Modify the heap code to provide a sorted string for describing a priority queue.
- Prove by induction that Dijkstra’s algorithm is correct.
- Implement Prim’s algorithm.