ANNOUNCEMENTS:

• A6 posted
• Prelim 2 tonight (OH 155: A-S; OH 165 T-Z)
• A7 TBA…
• office hours this week

OVERVIEW:

• motivation
• terminology
• DFS
• BFS
• algorithm for solution process

1. Motivation

• What happens if data structure links “cross over?”
• think loops and circular linked lists
• informally, we have a graph

1.1 The Gist

connect the nodes:

1.2 Applications

• “traveling salesman” and maps
• circuits
• structural models
• finite state machines
• and many more!

1.3 N-Puzzle Application

2. Graphs

2.1 Nodes

• data, items, points…
• the things/states/info that you want to connect
• also called vertices (set V)

2.2 Edges

• the lines between the points (set E)
• shows how and which points are connected
• can apply weights and direction
2.3 Graph
- set of edges, set of vertices
- \(|V| = \text{size of } V, |E| = \text{size of } E\)
- generalization of many other data structures!
- example:

![Graph Diagram]

2.4 Directed Graphs
- also called *digraphs*
- \(G = (V,E)\)
- edges have 1 direction
- write edge as ordered pair \((s,d)\) (source, destination) or \(s \rightarrow d\)
- an edge may have node connect to itself (\(s = d\))
- for 2-way direction, use another edge
- example:

![Directed Graph Diagram]

\[\text{Directed Graph } G = (V,E)\]

\[\text{Vertices } V = \{A,B,C,D\}\]

\[\text{Edges } E = \{(A,B),(B,C),(A,D),(A,C),(C,D),(D,C)\}\]

Example: Edges \((D,C)\) and \((C,D)\) are different!

2.5 More Directed Graphs Terms
- **adjacency**: for \((a,b)\), \(b\) is adjacent to \(a\) because there is an edge connecting \(b\) to \(a\) (reverse is not true, because of directed graph)
- **out-edges** of node \(n\): set of edges whose source is \(n\)
- **out-degree** of node \(n\): number of out-edges of \(n\)
- **in-edges** of node \(n\): set of edges whose destination is \(n\)
- **in-degree** of node \(n\): number of in-edges of \(n\)

![Directed Graph Diagram]

2.6 Continuing Directed Graph Terms
- **path**: sequence of edges in which destination node of an edge is source node of next edge in sequence; also, set of vertices that satisfy the same property
 - ex) edge def: \((A,B),(B,C),(C,D)\)
 - ex) node def: \(A,B,C,D\)
- **length of path**: number of edges in path or sum of weights on path (see Weight)
- **source of path**: source of first edge on path
- **destination of path**: destination of last edge on path
- **reachability**: nodes \(n\) is reachable from node \(m\) is there is a path from \(m\) to \(n\) (might have many paths between nodes)
- **simple path**: a path in which every node is the source and destination of at most two edges on the path (*path does not cross vertex more than once*)

![Directed Graph Diagram]
2.7 Cycles
- **cycle**: a simple path whose source and destination nodes are the same
- length of cycle: length of path (depends on choice of nodes or edges for description)
- loop: path (a,b),(b,a) (edges) or (a,a) (nodes)

3. More Graph Types/Qualities

3.1 Undirected Graphs
- edges have no arrows, so use set for edges: \{a,b\}
- can go any direction on edge
- nodes cannot form loops (\{a,a\} becomes just \{a\})

3.2 Directed Acyclic Graphs
- also called DAGs
- digraph with no cycles
- note: trees are DAGs (but not vice versa)

3.3 Connected Graphs
- a graph with path between every pair of distinct vertices
- disconnected graph includes “lone wolf” nodes (no edges)

3.4 Complete Graphs
- edge between every pair of distinct vertex

3.5 Labeled Graphs
- attach additional info to nodes and/or edges
- **weights/costs**: values on edges (best/worst edges)
 - edge ex) choosing shortest/quickest/best roads to take to get between towns
 - node ex) importance of reaching certain towns (“fun quotient”)
- also called **weighted graphs**

3.6 Trees?
- yes, directed acyclic graphs
- see Tree notes for pretty much the same definitions of vertex and edge

3.7 Sparse and Dense Graphs
- sparse: not many edges
 - \(|E| = O(|V|)|
 - ex) graph with same number of edges emanating from nodes has \(|E| = k|V|\), so \(|E| = O(|V|)\)
 \[
 |V| = 4 \\
 |E| = \left(\frac{2^{edges}}{node}\right)(4nodes) = 8edges
 \]
- dense: many edges
 - \(|E|\) essentially on the order of \(|V|^2\)
 - see pg. 546 DS&A (Def 16.6) for more precision
 \[
 |V| = 4 \\
 |E| = 16
 \]
4. Representations

4.1 Implicit

- rules/model creates a network of nodes/edges
- ex) puzzle moves
 - each move makes a new puzzle
 - treat each state as a node
 - so, rules implicit define a graph
- common for games!

4.2 Explicit

- define all nodes V and edges E ahead of time
- want system to represent edges
- why? it’s the “biggest problem”:
 - $G = (V,E)$ and each edge e in E is a pair (v_1,v_2)
 - most edges possible? $|V|^2$
 (form pairs from all nodes)
 - most sets of edges possible? $2^{(|V|^2)}$
- so, use container to represent edges
 - adjacency matrix
 - adjacency list

4.3 Adjacency Matrix

- adjacency matrix
 \[A_{ij} = \begin{cases}
 w_{ij} & \{v_i, v_j\} \in E \\
 0 & otherwise
\end{cases} \]

- terms
 v_i: node i; v_j: node j
 \{v_i, v_j\} $\in E$: edge between nodes i (v_i) and j (v_j)
 \{v_i, v_j\} belongs to set of edges E
 w_{ij}: weight of edge between nodes i and j
- A_{ij}: the matrix (rectangular 2x2 array) as rows (i) and
cols (j); coords correspond to nodes i and j

4.4 Adjacency List

- adjacency list: linked list of nodes adjacent to a node
- need $|V|$ lists

4.5 graph types to develop:

- undirected
- directed
- weighted
4.6 Undirected

\[A_{ij} = \begin{cases} 1 & \{v_i, v_j\} \in E \\ 0 & \text{otherwise} \end{cases} \]

Use array \(A\) of lists:
- \(A_i\) stores a linked list of nodes no edge implied by order in list nodes must be adjacent to \(A_i\)

\[
\begin{array}{c|cccc}
 i & A & B & C & D \\
 \hline
 A & 1 & 1 & 1 \\
 B & 1 & 1 & 1 \\
 C & 1 & 1 & 1 \\
 D & 1 & 1 & 1 \\
\end{array}
\]

4.7 Directed

\[A_{ij} = \begin{cases} 1 & \{v_i, v_j\} \in E \\ 0 & \text{otherwise} \end{cases} \]

Use array \(A\) of lists:
- \(A_i\) stores a linked list of nodes no edge implied by order in list nodes must be adjacent to \(A_i\)

\[
\begin{array}{c|cccc}
 i & A & B & C & D \\
 \hline
 A & x & x & x & x \\
 B & x & x & x & x \\
 C & x & x & x & x \\
 D & x & x & x & x \\
\end{array}
\]

4.8 Weighted

- assuming also weighted
- \(w_{ij}\): cost or weight of edge from node \(i\) to node \(j\)

\[A_{ij} = \begin{cases} w_{ij} & \{v_i, v_j\} \in E \\ 0 & \text{otherwise} \end{cases} \]

Use array \(A\) of lists: include weights
- List for \(i\) contains \(j, w\) for edge \((i, j)\)

\[
\begin{array}{c|cccc}
 i & A & B & C & D \\
 \hline
 A & 1 & 2 & 3 \\
 B & 1 & 1 & 1 \\
 C & 4 & 6 & 7 \\
 D & 4 & 6 & 7 \\
\end{array}
\]

4.9 Choice of AM or AL?

- Adjacency Matrix
 - uses \(O(|V|^2)\) space
 - can answer “is there an edge from \(i\) to \(j\)?” in \(O(1)\) time
 - enumerating all nodes adjacent to \(i\): \(O(|V|)\) (find all nodes \(j\) in row for \(i\))
 - could be sparse because of wasted space (0s)
 - better for dense graphs (lots of edges!)

- Adjacency List
 - uses \(O(|V|+|E|)\) space \(|V|\) for \(i\) nodes, \(|E|\) for \(j\) nodes emanating from each \(i\) node
 - can answer question “is there an edge from \(i\) to \(j\)?” in \(O(|E|)\) time
 - enumerating all nodes adjacent to \(i\): \(O(1)\) per adjacent node in linked list
 - better for sparse graphs (few edges)!
5. Interesting Problems

5.1 Paths
- find ways to reach/find/collect/organize information from network of nodes
- focus of a lot of research!

5.2 Reachability
- is there a path from a given node to another node?
- ex) find the solved state of N-Puzzle from scrambled state

5.3 Minimal Path
- find the shortest path from a node to another
- find the shortest path from every node to another
- use weights to find min/max distances

5.4 Cycles
- ex) Traveling Salesman problem
- find the smallest length cycle that passes through all nodes
- no one knows if there is an efficient algorithm for this (NP/NP-complete problems)

6. Exercises
- Show all edges and vertices of a 2x2 N-Puzzle.
- Demonstrate a scenario/game/model that forms an implicit graph.
- Demonstrate why we use edges for explicit representations of graphs. (Section 4.2)