1. Number Guessing Example

1.1 Code

```java
import java.io.*;

public class NumberGuess {
    public static void main(String[] args) throws IOException {
        int guess;
        int count;
        final int LOW=Integer.parseInt(args[0]);
        final int HIGH=Integer.parseInt(args[1]);
        final int STOP=HIGH-LOW+1;
        int target = (int)(Math.random()*(HIGH-LOW+1))+(int)(LOW);
        BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

        System.out.print("Guess an integer: ");
        guess = Integer.parseInt(in.readLine());
        count = 1;
        while (guess != target && guess >= LOW &&
             guess <= HIGH   && count < STOP ) {
            if (guess < target) System.out.println("Too low!");
            else if (guess>target) System.out.println("Too high!");
            else System.exit(0);
            System.out.print("Guess an integer: ");
            guess = Integer.parseInt(in.readLine());
            count++ ;
        }
        if (target == guess)
            System.out.println("Congratulations!");
    }
}
```

1.2 Solution Algorithms

- random:
 - pick any number
 - worst-case time could be infinite
- linear:
 - guess one number at a time
 - start from bottom and head to top
 - worst-case time could be size of range
- binary:
 - start at middle and check guess
 - go up or down based on guess
 (numbers are “pre-sorted!”)
 - worst-case time?

1.3 Example: 1→100

- linear: 100 possible guesses
- binary?
 - assume 100 is the target
 - assume always round down for integer division
 - pattern: 50→75→87→93→96→98→99→100
 - 8 guesses in worst case

1.4 More General

- count only comparisons of guess to target
 (same number as guesses)
- other examples:

```
<table>
<thead>
<tr>
<th>range</th>
<th>linear</th>
<th>binar</th>
<th>pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1→1</td>
</tr>
<tr>
<td>1–10</td>
<td>10</td>
<td>5</td>
<td>5→7→8→9→10</td>
</tr>
<tr>
<td>1–100</td>
<td>100</td>
<td>8</td>
<td>50→75→87→93→96→98→99→100</td>
</tr>
<tr>
<td>1–1000</td>
<td>1000</td>
<td>11</td>
<td>500→750→875→937→968→984→992→996→998→999→1000</td>
</tr>
</tbody>
</table>
```

- binary search time grows very slowly in comparison to linear search algorithm

1.5 General

- linear:
 - runtime is proportional to n
 - $T(n) = n$
2. Algorithm Analysis

2.1 Algorithm

- steps to solve a problem
- supposed to be independent of implementation
- before programming, should decide on best algorithm!
- how to rate algorithms?

2.2 How to analyze an algorithm?

- running time
- memory needed/used
- correctness of output/results
- clarity for a human
- robustness/generality

2.3 Exact analysis

- exact analysis is too detailed
 - hardware (CPU, memory,...)
 - software (OS, lang, compiler,...)
- focus on time and space for measurement
 - time: how many steps required?
 - space: how much memory needed?
- we tend to focus on time, since memory is cheap

3. Machine Model

3.1 Stack Machine

- memory for stack, static, registers, heap, program areas:
 - space: how much of the memory is needed
 - time: how quickly can the values be stored and retrieved in/from the memory
- JVM:
 - Java code is compiled to byte code and stored in program area (think sam-code)
 - interpreter acts on each instruction one at a time
 - instructions store and retrieve values from memory

3.2 Space Analysis of Machine Model

- Run JVM (SaM) to see the stack grow and shrink
- best and worst case: try not to run out of stack space!

4. Time Analysis of Machine Model

4.1 Actions that we will count as constant

- time required to fetch an operand
- time required to store a result
- time required to perform an ALU op
- time required to call a method
- time required to return from a method
- time required to pass arg to method
- time required to calculate the address for array index
- time time to create an object (does not include fields)

4.2 Examples

- \(y = y + 1 \); has 2*fetch + op + store
- \(y = a[i] \); has 3*fetch (a,i,a[i]) + array + store

4.3 Average running time

- kind of complicated – see DS&A
- probability of getting certain inputs

4.4 Best case

- assume best possible ordering of data or input
- not too useful
4.5 Worst case
- assume worse possible ordering of data or input
- this is what we focus on!
- example) number guessing for [1, 100]
 - best case #: 1 guess!
 - average case #: maybe 4?
 - worst case #:
 8 for binary
 100 for linear
- so, worst-case analysis helps to determine choice of
 binary search more useful!

5. Machine Architecture

5.1 Processor clock
- coordinates memory ops by generating time reference
- clock generates signal called clock cycle or tick

5.2 Clock speed
- how fast instructions execute
- measured as clock frequency: how many ticks per second (MHz or GHz)
- how many instructions executed per tick?
 - depends on CPU, instruction set, instruction type
 - one instruction takes one tick, maybe more
 - architectures: CISC (PCs), RISC (Macs, Suns)

5.3 Clock period
- $T = 1/frequency$ (unit of time/tick)
- measured nano (or smaller) seconds
- e.g.) 2.4 GHz Gateway? E-6000 has
 - clock speed: 2.4×10^9 tick/s
 - clock period: 4.17×10^{-10} (s/tick) (or just 0.417 ns)

5.4 Algorithm time and clock period
- Time for instruction to happen is proportional to T
 - T for clock period
 - so, action = kT, where $k > 0$, k is integer
- Simplifications:
 - express actions in terms of T
 - let $T=1$ since we express all actions in terms of T
 - let each $k = 1$
 - so, we assume each operation takes the same amount
 of time (1 cycle or operation)
- Examples:
 - ALU: 1 op
 - $Assign$: 1 op
 store value on LHS; ops on RHS counted separately
 - $Loop$:
 ((loop iterations)*(# of ops/iteration)) ops
 - $Selection$:
 (worst-case of condition or any sub-statement) ops
 - $Method$:
 (number of ops inside a method) ops

5.5 Time Analysis Examples
- rem: $1 + 2 + \ldots + n = \frac{n(n + 1)}{2}$
- three approaches to represent sum algorithm:

<table>
<thead>
<tr>
<th>Code (1)</th>
<th>Time analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum = n*(n+1)/2</td>
<td>8</td>
</tr>
<tr>
<td>total: 7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code (2)</th>
<th>Time analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum = 0;</td>
<td>2</td>
</tr>
<tr>
<td>for(int i=1;</td>
<td></td>
</tr>
<tr>
<td>i <= n;</td>
<td>3 * n</td>
</tr>
<tr>
<td>i++;</td>
<td>4 * n</td>
</tr>
<tr>
<td>sum = sum + 1;</td>
<td></td>
</tr>
<tr>
<td>total:</td>
<td></td>
</tr>
<tr>
<td>11*n+4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code (3)</th>
<th>Time analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum = 0;</td>
<td>2</td>
</tr>
<tr>
<td>for(int i=1;</td>
<td></td>
</tr>
<tr>
<td>i <= n;</td>
<td>3 * n</td>
</tr>
<tr>
<td>i++;</td>
<td>4 * n</td>
</tr>
<tr>
<td>for(int j=1;</td>
<td></td>
</tr>
<tr>
<td>j <= i;</td>
<td>3 * sum(i, i = 1..n)</td>
</tr>
<tr>
<td>j++;</td>
<td>3 * sum(i, i = 1..n)</td>
</tr>
<tr>
<td>sum = sum + 1;</td>
<td></td>
</tr>
<tr>
<td>total:</td>
<td></td>
</tr>
<tr>
<td>5n^2+13n+4</td>
<td></td>
</tr>
</tbody>
</table>

- C&S analyze algorithm, not code (smarter approach!)
 see Section 9.9
5.6 Analysis Of The Analysis
• approaches:
 - \(T_1(n) = 8 \)
 - \(T_2(n) = 11n + 4 \)
 - \(T_3(n) = 5n^2 + 13n + 8 \)
• as \(n \) increases, approach (1) will run a lot faster!

5.7 Intuitive Approach
• pick the dominant or most important operation
• count the dominant operation, which is usually a comparison inside a loop
• don’t worry about lower order terms, since we worry about case of large \(n \)
• don’t worry about constants in front of leading term

5.8 Recurrence Relations
• recursion: C&S 10.22–10/25
• merge sort: C&S 12.5–12.7
• quick sort: C&S 12.10

6. Asymptotic Complexity
also growth notation, asymptotic notation, Big Oh

6.1 How to compare algorithms?
• find each \(T(n) \) function
• problem:
 - they’re not really that exact because of limitations in assumptions
 - we need worst-case scenarios!
• solution:
 - need a measure that is accurate in the extreme
 - one measure: asymptotic upper bound

6.2 Big Oh Notation
• Definition:
 \[O(g(n)) = \{ f(n) | (c, n_0) \text{ such that } 0 \leq f(n) \leq cg(n), n \geq n_0 \} \]
• \(O(g(n)) \) provides an asymptotic upper bound
• not the tightest upper bound, though
• \(f(n) \in O(g(n)) \) means that \(f \) is function that belongs to a set of bounding functions \(O(g(n)) \)
• books usually say \(f(n) = O(g(n)) \)

6.3 Witness Pair
• the idea is that for a large data set, an algorithm becomes dominated by the input
• \(g \) bounds \(f \) given a certain value of \(c \) for all \(n \) past a certain \(n \) (\(n_0 \))
• need to find a value of \(c \) and \(n_0 \) so that \(f(n) \leq cg(n) \) is satisfied
• both \(c \) and \(n_0 \) must be greater or equal to zero

6.4 Why asymptotic?
• We focus on highest-order term, which is the asymptote that the runtime approaches
 - For example, \(2n+10 \) takes more time than \(n+1 \), but they have the same asymptotic complexity!
 - For small \(n \), difference is important
 - For big \(n \) (worst case), difference is negligible
• For worst-case, drop the constants and lower terms:
 \[T_1(n) = 8 \rightarrow T_1(n) \in O(1) \]
 \[T_2(n) = 11n + 4 \rightarrow T_2(n) \in O(n) \]
 \[T_3(n) = 5n^2 + 13n + 8 \rightarrow T_3(n) \in O(n^2) \]
6.5 Why complexity?
- Because we talk about the amount of work that must be done (how many steps must be performed.) Usually this is in terms of number of comparisons or number of swaps, for a searching or sorting algorithm.
- Amount of work required = complexity of the problem.

6.6 Why complexity classes?
- Class: classification of sets of bounding functions
- Why is this important?
 - 1. It allows us to compare two algorithms that solve the same problem and decide which one is more efficient.
 - 2. It allows us to estimate approximately how long it might take to run a program on a specific input.
 - e.g. If I have an O(n^3) algorithm, and I give it an input with 300 items, it will take about 27,000,000 steps! If I know how many such steps my computer can do per second, I can figure out how long I’ll have to wait for the program to finish.
- Note that it’s important to know what is being measured. Number of comparisons? Swaps? Additions? Divides? (ouch! Divide is VERY expensive!)

7. Complexity Classes

7.1 Limits
- Given two non-decreasing functions of positive integers f and g, denote
 \[L(f, g) = \lim_{n \to \infty} \frac{f(n)}{g(n)} \]
- \(L(f, g) \) is a constant that’s either 0, positive, or infinite.
- We are interested in knowing whether or not f grows faster or slower than g.
- The limit determines the eventual relationship as \(n \) increases.
- If the limit reaches a constant or zero, g is growing faster than f and thus gives an upper bound to f.

7.2 Varieties of complexity classes
- Given \(M = \) set of all positive monotonically increasing function of positive integers. A function \(f(x) \) is monotonic increasing if \(a < b \) implies \(f(a) < f(b) \).
- Five varieties
 - \(o(g) = \{ f \in M \mid L(f,g) = 0 \} \)
 - \(O(g) = \{ f \in M \mid 0 \leq L(f,g) < \infty \} \)
 - Theta(g) = \{ f \in M \mid 0 < L(f,g) < \infty \}
 - Omega(g) = \{ f \in M \mid L(f,g) = \infty \}
 - omega(g) = \{ f \in M \mid L(f,g) = \infty \}
- We focus on \(O(g) \): think of \(O(g) \) as set of all functions \(f \) that belong to \(M \) that grow faster (cause limit of \(f(n)/g(n) \) to become 0 or const).

8. Examples

8.1 Example 1
- Prove that \(f(n)=(11/2)n^2 + (47/2)n + 22 \) is in \(O(n^3) \)
- \(f(n) \leq c \cdot n^3 \) for some \(c > 0 \) and \(n \geq n_0 \geq 0 \)
- we need to find a \((c,n_0)! \)
 - \((11/2)n^2 + (47/2)n + 22 \leq cn^3 \)
 - let \(c=1 \)
 - \(n^3 - (11/2)n^2 - (47/2)n - 22 \geq 0 \)
 - \(n0 = 8.6 \)
- so, before \(n=8.6, f(n) \) is higher than \(n^3 \).
- but afterwards, \(n^3 \) is higher, and is thus an upper bound.
- Note: you could actually make tight bounds is you said \(f(n)=O(n^2) \)
- In general, for polynomials, with highest term \(n^m \), \(f(n)=O(n^m) \)
8.2 Example 2

- Problem: Given \(f_1(n) = O(g(n)) \) and \(f_2(n) = O(g(n)) \) and \(h(n) = f_1(n) + f_2(n) \), is \(h(n) = O(g(n)) \)? Justify formally using witness pairs \((k, N)\).

- Solution: Yes

- Proof: Using givens and witness pairs \((c_1, n_1)\) and \((c_2, n_2)\):
 - \(f_1(n) \leq c_1 g(n) \) for all \(n > n_1 \)
 - \(f_2(n) \leq c_2 g(n) \) for all \(n > n_2 \)

- Let \(c_s = c_1 + c_2 \) and \(n_s = \max(n_1, n_2) \) to define witness pair \((c_s, n_s)\).

- Add \(f_1 \) and \(f_2 \):
 - \(f_1(n) + f_2(n) \leq (c_1 + c_2) g(n) \)
 - \(\leq c_s g(n) \)

- This relation is true for all \(n > n_s \).

- Given our valid witness pair, \(h(n) = O(g(n)) \).

9. Math Review

9.1 Powers

- \((x^a)(x^b) = x^{a+b}\)
- \((x^a)/(x^b) = x^{a-b}\)
- \((x^a)^b = x^{a*b}\)
- \((xy)^a = (x^a)(y^a)\)

9.2 Logarithms

- Definition:
 - Let \(x^p = v \) and \(x \) is not 0 and 1.
 - Then, \(p = \log[x](v) \), where \(p \) is the logarithm of \(v \) to base \(x \).

- Terms:
 - common log: base 10 (social scientists) (\(\log[10]\))
 - natural log: base e (engineers) (\(\ln\))
 - binary log: base 2 (computer scientists) (\(\log\) or \(\lg\))

- Laws:
 - \(\log[b](b^y) = y\)
 - \(b^{\log[b](x)} = x\)
 - \(\log[b](uv) = \log[b](u) + \log[b](v)\)
 - \(\log[b](u/v) = \log[b](u) - \log[b](v)\)
 - \(\log[b](u^v) = v \log[b](u)\)
 - \(\log[b](x) = \log[c](x)/\log[c](b) = \log[b](c) * \log[c](x)\)

- Integral Binary Logarithm
 - floor\((\log[2](n))\) for integer \(n \)
 - number of times \(n \) can be divided by 2 before reaching 1

9.3 Sets

- collection of unique items
 - example) \(S = \{ a, c, b, 1 \} \)
- membership:
 - example) \(1 \in S \) (1 is in \(S \))
- special notation: \(\{ x \mid y \} \)
 - a set of items \(x \) such that property \(y \) holds
 - example) \(S = \{ x \mid 1 \leq x \leq 4, x \in \text{integers} \} \)
 - (\(S \) is the set of integers between 1 and 4, inclusive)