Announcements
- many section files posted
- applications.html
- lecture files on the way!
- A2 due next week

Overview
- answer questions
- recursion
- tail recursion
- Towers of Hanoi

1. Recursion

1.1 Induction
- show that induction process helps to “wire” your brain for recursion
- if you can identify base case, inductive hypothesis, and inductive step, you’re very close!

1.2 Example
- iterative sum of n integers:
 - $S(0) = 0$
 - $S(1) = 1 + 0 = 1$
 - $S(2) = 2 + 1 + 0 = 3$
 - $S(3) = 3 + 2 + 1 + 0 = 6$
 - …
 - $S(n) = (n+1)*n/2$

- recursive sum of n integers:
 - $S(0) = 0$
 - $S(n) = n + S(n-1)$
 - check:
 - $S(1) = 1 + S(0) = 1$
 - $S(2) = 2 + S(1) = 2 + 1 + 0 = 3$
 - $S(3) = 3 + S(2) = 3 + 2 + 1 + 0 = 6$

- identical, but completely different ways to state
 - iterative screams of loops
 - recursive is … well, recursive

1.3 Iterative Solution
- Algorithm:
 - get $n >= 0$
 - count $\leftarrow 0$, sum $\leftarrow 0$
 - if count $\leq n$, sum increments by count
 - repeat
- Code:

```java
public class IterativeSum {
    public static void main(String[] args) {
        final int N = Integer.parseInt(args[0]);
        int sum = 0;
        for (int k = 0 ; k <= N ; sum += k, k++);
        System.out.println(sum);
    }
}
```
1.4 Recursive Solution

- Algorithm:
 - get n.
 - if n is 0, sum ← 0
 - otherwise, sum ← n + sum(n-1)

- Code:

```
public class RecursiveSum {
    public static void main(String[] args) {
        final int N = Integer.parseInt(args[0]);
        int sum = sum(N);
        System.out.println(sum);
    }
    private static int sum(int n) {
        if (n==0)
            return 0;
        else
            return n + sum(n-1);
    }
} // Class RecursiveSum
```

1.5 Alternative Recursive Solution

```
public class RecursiveSumAlt {
    public static void main(String[] args) {
        final int N = Integer.parseInt(args[0]);
        int sum = sum(N);
        System.out.println(sum);
    }
    private static int sum(int n) {
        int sum;
        if (n==0)
            sum = 0;
        else
            sum = n + sum(n-1);
        return sum;
    }
} // Class RecursiveSumAlt
```

1.6 Cool Concepts

- Computational path for a recursive series is two-way:
 - 1st path goes up: recursive calls pile up on stack
 - 2nd path goes down: answers combined together
 - So, the 1st path breaks the problem down into simple
 basic components, and the 2nd path assembles the sol
- You can calculate really complex things using recursion
 with simple sub-processes.
- Two essential parts of any recursive definition:
 - Base case(s): tells the recursion when to stop
 - Recursive step: tells the recursion how to break a
 problem into an operation it knows (e.g., addition)
 and a simpler problem (S(n-1))
- sum(2) example:

```
s 0
n 0
rv 0
---
s 0
n 1
rv 1
---
```

2. Tail Recursion

2.1 Definition

- tail recursion: last action by recursive method is a
 recursive call
- generally can easily convert tail recursive method into
 an iterative (loop) form
- see example from before: I counted how many sums I
 needed to know

2.2 Why?

- recursion builds frame upon frame on the stack
- consumes large amount of memory if recursion is deep
- space efficiency can be improved by jumping up and
 down in the same frame for one method call
- will see this issue later in asymptotic complexity