Recursion

Let us now study recursion in its own right. Recursion is a powerful technique for specifying functions, sets, and programs. Recursively-defined functions and programs:
- factorial
- counting combinations
- differentiation of polynomials
Recursively-defined sets:
- grammars
- language of expressions

Factorial function

- How many ways can you arrange \(n \) distinct objects? This function is called \(\text{fact}(n) \).
 - If \(n = 1 \), then there is just one way.
 - If \(n > 1 \), number of ways = \(n \)* number of ways to arrange \((n-1)\) objects
 (see next slide for example)

\[
\begin{align*}
\text{fact}(1) &= 1 \\
\text{fact}(n) &= n \text{fact}(n-1) \quad (n > 1)
\end{align*}
\]
- Another description of \(\text{fact}(n) \):
 \(\text{fact}(n) = 1 \times 2 \times \ldots \times n = n! \)
- Convention: \(\text{fact}(0) = 1 \)

Permutations of non-green blocks

From each permutation of non-green blocks, we can generate 4 permutations of the four blocks.

Total number = 4*6 = 24 = 4!
Recursive program: factorial

\[\text{fact}(0) = 1 \]
\[\text{fact}(n) = n \times \text{fact}(n-1) \quad (n > 0) \]

```java
static int factorial(int n) {
    if (n == 0) return 1;
    else return n * factorial(n - 1);
}
```

Execution of factorial(4)

General approach to writing recursive functions

1. Try to find a parameter of problem (say \(n \)) such that solution to problem can be obtained by combining solutions to same problem with smaller values of \(n \). (e.g.) chess-board tiling problem, factorial
2. Figure out base case or base cases by determining small enough values of \(n \) for which you can write down the solution to problem.
3. Verify that for any value of \(n \) of interest, applying the reduction step of step 1 repeatedly will ultimately hit one of the base cases.
4. Write the code.

Fibonacci function

- Mathematical definition:
 \[
 \text{fib}(0) = 1 \quad \text{fib}(1) = 1 \quad \text{fib}(n) = \text{fib}(n-1) + \text{fib}(n-2) \quad | n > 1
 \]
 fibonacci sequence: 1,1,2,3,5,8,13,….

```java
static int fib(int n) {
    if (n == 0) return 1;
    else if (n == 1) return 1;
    else return fib(n - 1) + fib(n - 2);
}
```

Statue of Fibonacci in Pisa, Italy
Recursively-defined functions: Counting Combinations

How many ways can you choose \(r \) items from a set \(S \) of \(n \) distinct elements? \(^nC_r \)

Example:

\(S = \{A,B,C,D,E\} \)

Consider subsets of 2 elements.

Subsets containing \(A \): \(^4C_1 \)

\(\{A,B\}, \{A,C\}, \{A,D\}, \{A,E\} \)

Subsets not containing \(A \): \(^4C_2 \)

\(\{B,C\}, \{B,D\}, \{C,D\}, \{B,E\}, \{C,E\}, \{D,E\} \)

Therefore, \(^5C_2 = ^4C_1 + ^4C_2 \)

Counting Combinations has two base cases

\(^nC_r = n^{-1}C_{r-1} + n^{-1}C_{r-1} \) \(\quad | \text{ for } n > r > 0 \)

\(^nC_n = 1 \)

\(^nC_0 = 1 \)

Two base cases

- Coming up with right base cases can be tricky!
- General idea:
 - Figure out argument values for which recursive case cannot be applied.
 - Introduce a base case for each one of these.
- Rule of thumb: (not always valid) if you have \(r \) recursive calls on right hand side of function definition, you may need \(r \) base cases.
Recursive program: counting combinations

\[\binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1} \quad | \quad n > r > 1 \]
\[\binom{n}{n} = 1 \]
\[\binom{n}{0} = 1 \]

static int combs(int n, int r) { //assume n>r>1
 if ((r == 0) return 1; //base case
 else if (n == r) return 1; //base case
 else return combs(n-1,r) + combs(n-1,r-1);
}

Polynomial differentiation

Recursive cases:
\[\frac{d(uv)}{dx} = udv/dx + v du/dx \]
\[\frac{d(u+v)}{dx} = du/dx + dv/dx \]
Base cases:
\[\frac{dx}{dx} = 1 \]
\[\frac{dc}{dx} = 0 \]

Example:
\[\frac{d(3x)}{dx} = 3dx/dx + x \frac{d(3)}{dx} = 3*1 + x*0 = 3 \]

Positive integer powers

\[a^n = a * a * ... * a \quad (n \text{ times}) \]
Alternative description:
\[a^0 = 1 \]
\[a^n = a * a^{n-1} \]

• Let us write this using standard function notation:
 power(a,n) = a*power(a,n-1) \quad | \quad n > 0
 power(a,0) = 1

Recursive program for power

static int power(int a, int n) {
 if (n == 0) return 1;
 else return a*power(a,n-1);
}
Smarter power program

- Power computation:
 - If \(n = 0 \), \(a^n = 1 \)
 - If \(n \) is non-zero and even, \(a^n = (a^{n/2})^2 \)
 - If \(n \) is odd, \(a^n = (a^{n/2})^2 \cdot a \)

- Java note: If \(x \) and \(y \) are integers, expression "\(x/y \)" returns the integer part of the quotient.

Example:
\[
a^n = (a^{n/2})^2 \cdot a = (a^{n/2})^2 \cdot a = ((a^{n/2})^2 \cdot a
\]

Note: this requires 3 multiplications rather than 5.

- What if \(n \) were higher?
 - savings would be higher

- We will see later that recursive power is “much faster” than straight-forward computation.
 - Straight-forward computation: \(n \) multiplications
 - Smarter computation: \(\log(n) \) multiplications

Smarter power program in Java

- If \(n \) is non-zero and even, \(a^n = (a^{n/2})^2 \)
- If \(n \) is odd, \(a^n = (a^{n/2})^2 \cdot a \)

```java
static int coolPower(int a, int n)
{
  if (n == 0) return 1;
  else
  {
    int halfPower = coolPower(a, n/2);
    if ((n/2)*2 == n)   //n is even
      return halfPower*halfPower;
    else //n is odd
      return halfPower*halfPower*a;
  }
}
```

Implementing recursive methods

- Ur-Java implementation model already supports recursive methods.

- Key idea:
 - each method invocation gets its own frame
 - frame for method invocation \(f \): bottom to top order
 - return value: where function return value is to be saved before returning to caller
 - lowest location of frame
 - on return, this location becomes part of frame of caller
 - method parameters
 - method variables

Suppose method \(f \) invokes method \(g(p1,p2,p3) \).
When \(g \) returns, it leaves its return value on top of stack.
Analogy: arithmetic expression evaluation
\((2 + 3) \) is implemented as
\[
PUSHIMM 2
\]
\[
PUSHIMM 3
\]
\[
ADD
\]

\[
Frame for
invocation of f
\]
\[
Frame for
invocation of g
\]
\[
Frame for
return value
\]
\[
Frame for
invocation of f
\]
Let us look at how stack frames are pushed and popped for execution of the invocation `power(5, 3)`.

At conceptual level, here is the sequence of method invocations:

```
power(5, 3)  Æ  power(5, 2)  Æ  power(5, 1)  Æ  power(5, 0)
```

```
public static int power(int b, int p){
    if (p == 0) return 1;
    else return power(b, p-1) * b;
}
```

Exercise

- Draw similar picture for execution of `fib(5)`.

Something to think about

- At any point in execution, many invocations of `power` may be in existence, so many stack frames for power invocations may be in stack area.
- This means that variables `p` and `b` in text of program may correspond to several memory locations at any time.
- How does processor know which location is relevant at any point in computation?
 - another example of association between name and “thing” (in this case, stack location)
Answer:
- Computational activity takes place only in the topmost (most recently pushed) frame.
- Special register called Frame Base Register (FBR) keeps track of where the topmost frame is.
 - When a method is invoked, a frame is created for that method invocation, and FBR is set to point to that frame.
 - When the invocation returns, FBR is restored to what it was before the invocation.
 - How does machine know what value to restore in FBR?
 - See later

- In low-level machine code, addresses of parameters and local variables are never absolute memory addresses (like 102 or 5099), but are always relative to the FBR (like –2 from FBR or +5 from FBR).

Editorial comments

- Recursion is a very powerful way of defining functions.
- Problems that seem insurmountable can often be solved in a 'divide-and-conquer' way
 - Split big problem into smaller problems of the same kind, and solve smaller problems
 - Put solution to smaller problems together to form solution for big problem
- Recursion is often useful for expressing divide-and-conquer algorithms in a simple way.
- We will use parsing of languages to demonstrate this in the next lecture.

static int power(int b, int p)
 if (p == 0) return 1;
 else return b*power(b,p-1);

 p : 0
 b : 5
 rv : 1
 p' : 1
 b' : 5
 rv' : 1
 p'' : 2
 b'' : 5
 rv'' : 1
 i : 1

p : 1
b : 5
rv : 2