Induction

Overview

• Recursion
 – a strategy for writing programs that compute in a “divide-and-conquer” fashion
 – solve a large problem by breaking it up into smaller problems of same kind
• Induction
 – a mathematical strategy for proving statements about integers (more generally, about sets that can be ordered in some fairly general ways)
• Understanding induction is useful for figuring out how to write recursive code.

Defining Functions

• It is often useful to write a given function in different ways.
 – (eg) Let $S : \text{int} \rightarrow \text{int}$ be a function where $S(n)$ is the sum of the natural numbers from 0 to n.
 $S(0) = 0, S(3) = 0 + 1 + 2 + 3 = 6$
 – One definition: iterative form
 • $S(n) = 0 + 1 + ... + n$
 – Another definition: closed-form
 • $S(n) = \frac{n(n+1)}{2}$

Equality of function definitions

• How would you prove the two definitions of $S(n)$ are equal?
 – In this case, we can use fact that terms of series form an arithmetic progression.
• Unfortunately, this is not a very general proof strategy, and it fails for more complex (and more interesting) functions.
Sum of Squares Functions

• Here is a more complex example.
 – (eg) Let \(SQ: \mathbb{N} \to \mathbb{N} \) be a function where \(SQ(n) \) is the sum of the squares of natural numbers from 0 to \(n \).
 \[SQ(0) = 0, \quad SQ(3) = 0^2 + 1^2 + 2^2 + 3^2 = 14 \]

• One definition:
 – \(SQ(n) = 0^2 + 1^2 + \ldots + n^2 \)

• Is there a closed-form expression for \(SQ(n) \)?

Closed-form expression for \(SQ(n) \)

• Sum of natural numbers up to \(n \) was \(n(n+1)/2 \)
 which is a quadratic in \(n \).

• Inspired guess: perhaps sum of squares on natural numbers up to \(n \) is a cubic in \(n \).

• So conjecture: \(SQ(n) = a.n^3 + b.n^2 + c.n + d \) where \(a, b, c, d \) are unknown coefficients.

• How can we find the values of the four unknowns?
 – Use any 4 values of \(n \) to generate 4 linear equations, and solve.

Finding coefficients

\(SQ(n) = 0^2 + 1^2 + \ldots + n^2 = a.n^3 + b.n^2 + c.n + d \)

• Let us use \(n=0,1,2,3 \).

- \(SQ(0) = 0 = a.0 + b.0 + c.0 + d \)
- \(SQ(1) = 1 = a.1 + b.1 + c.1 + d \)
- \(SQ(2) = 5 = a.8 + b.4 + c.2 + d \)
- \(SQ(3) = 14 = a.27 + b.9 + c.3 + d \)

• Solve these 4 equations to get
 \(a = 1/3, \quad b = 1/2, \quad c = 1/6, \quad d = 0 \)

• This suggests
 \(SQ(n) = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6} \)
 \(= \frac{n(n+1)(2n+1)}{6} \)

• Question: How do we know this closed-form solution is true for all values of \(n \)?
 – Remember, we only used \(n = 0,1,2,3 \) to determine these co-efficients. We do not know that the closed-form expression is valid for other values of \(n \).
• One approach:
 – Try a few values of n to see if they work.
 – Try $n = 5$. $\text{SQ}(n) = 0 + 1 + 4 + 9 + 16 + 25 = 55$
 – Closed-form expression: $5 \times 6 \times 11 / 6 = 55$
 – Works!
 – Try some more values….

• Problem: we can never prove validity of closed-form solution for all values of n this way since there are an infinite number of values of n.

To solve this problem, let us express $\text{SQ}(n)$ in another way.

\[
\text{SQ}(n) = \sum_{i=0}^{n-1} i^2 + n^2
\]

This leads to the following recursive definition of SQ:

\[
\begin{align*}
\text{SQ}(0) &= 0 \\
\text{SQ}(n) &= \text{SQ}(n-1) + n^2 \quad | \quad n > 0
\end{align*}
\]

Vertical bar $|$ means “whenever”

To get a feel for this definition, let us look at

\[
\begin{align*}
\text{SQ}(4) &= \text{SQ}(3) + 4^2 = \text{SQ}(2) + 3^2 + 4^2 = \text{SQ}(1) + 2^2 + 3^2 + 4^2 \\
&= \text{SQ}(0) + 1^2 + 2^2 + 3^2 + 4^2 = 0 + 1^2 + 2^2 + 3^2 + 4^2
\end{align*}
\]

Notation for recursive functions

- **Base case**
 \[
 \text{SQ}(0) = 0
 \]
 \[
 \text{SQ}(n) = \text{SQ}(n-1) + n^2 \quad | \quad n > 0
 \]

- **Recursive case**

Can we show that these two definitions of $\text{SQ}(n)$ are equal?

\[
\begin{align*}
\text{SQ}_r(0) &= 0 \\
\text{SQ}_r(n) &= \text{SQ}_r(n-1) + n^2 \quad | \quad n > 0
\end{align*}
\]

\[
\text{SQ}_c(n) = \frac{n(n+1)(2n+1)}{6}
\]

r: recursive

c: closed-form
Dominoes

- Assume equally spaced dominoes, and assume that spacing between dominoes is less than domino length.
- How would you argue that all dominoes would fall?
- Dumb argument:
 - Domino 0 falls because we push it over.
 - Domino 1 falls because domino 0 falls, domino 0 is longer than inter-domino spacing, so it knocks over domino 1.
 - Domino 2 falls because domino 1 falls, domino 1 is longer than inter-domino spacing, so it knocks over domino 2.
 - …
- Is there a more compact argument we can make?

Better argument

- Argument:
 - Domino 0 falls because we push it over (base case).
 - Assume that domino k falls over (inductive hypothesis).
 - Because domino k’s length is larger than inter-domino spacing, it will knock over domino k+1 (inductive step).
 - Because we could have picked any domino to be the kth one, we conclude that all dominoes will fall over (conclusion).
- This is an inductive argument.
- This is called weak induction. There is also strong induction (see later).
- Not only is it more compact, but it works even for an infinite number of dominoes!

Weak induction over integers

- We want to prove that some property P holds for all integers n ≥ 0.
- Inductive argument:
 - P(0): (base case) show that property P is true for 0
 - P(k): (inductive hypothesis) assume that P(k) is true for a particular integer k.
 - P(k) => P(k+1): (inductive step) show that if property P is true for integer k, it is true for integer k+1
 - P(n): (conclusion) Because we could have picked any k, this means P(n) holds for all integers n ≥ 0.

SQi(n) = SQc(n) for all n?

Define P(n) as SQi(n) = SQc(n)

Prove P(0).
Assume P(k) for particular k.
Prove P(k+1) assuming P(k).
Let \(P(n) \) be the proposition that \(SQ_r(n) = SQ_c(n) \).

Proof by induction:

Base case

- \(SQ_r(0) = 0 = SQ_c(0) \)

Inductive hypothesis

Assume \(SQ_r(k) = SQ_c(k) \)

Inductive step

Prove that \(P(k) \Rightarrow P(k+1) \):

\[
SQ_r(k+1) = SQ_r(k) + (k+1)^2
\]

= \(SQ_c(k) + (k+1)^2 \) (inductive hypothesis)

= \(k(k+1)(2k+1)/6 + (k+1)^2 \) (definition of \(SQ_c \))

= \((k+1)(k+2)(2k+3)/6 \) (algebra)

= \(SQ_c(k+1) \) (definition of \(SQ_c \))

Therefore, \(SQ_r(n) = SQ_c(n) \) for all integers \(n \). Conclusion

Another example of weak induction

Prove that the sum of the first \(n \) integers is \(n(n+1)/2 \).

Let \(S(i) = 0+1+2+\ldots+i \)

Show that \(S(n) = n(n+1)/2 \).

- **Base case**: \(n=0 \)
 - \(S(0) = 0 \)
- **Inductive hypothesis**: Assume \(S(k) = k(k+1)/2 \) for a particular \(k \).
- **Inductive step**:
 - \(S(k+1) = 0+1+2+\ldots+k+(k+1) = S(k) + (k+1) \)
 - \(= k(k+1)/2 + (k+1) \)
 - \(= (k+1)(k+2)/2 \) (algebra)
 - Therefore, if result is true for \(k \), it is true for \(k+1 \).
- **Conclusion**: result follows for all integers.
- **Note**: we did not use arithmetic progressions theory.

Note on base case

- In some problems, we are interested in showing some proposition is true for integers greater than or equal to some lower bound (say \(b \)).
- Intuition: we knock over domino \(b \), and dominoes in front get knocked over. Not interested in dominoes \(0,1,\ldots,(b-1) \).
- In general, base case in induction does not have to be 0.
- If base case is some integer \(b \), induction proves proposition for \(n = b, b+1, b+2, \ldots \).
- Does not say anything about \(n = 0, 1, \ldots, b-1 \).
Weak induction: non-zero base case

- We want to prove that some property P holds for all integers $n \geq b$
- Inductive argument:
 - $P(b)$: show that property P is true for integer b
 - $P(k)$: assume that $P(k)$ is true for a particular integer k.
 - $P(k) \Rightarrow P(k+1)$: show that if property P is true for integer k, it is true for integer $k+1$
 - $P(n)$: Because we could have picked any k, this means $P(n)$ holds for all integers $n \geq b$.

More on induction

- In some problems, it may be tricky to determine how to set up the induction:
 - What are the dominoes?
- This is particularly true in geometric problems that can be attacked using induction.

Tiling problem

- Problem:
 - A chess-board has one square cut out of it.
 - Can the remaining board be tiled using tiles of the shape shown in the picture?
- Not obvious that we can use induction to solve this problem.

Idea

- Consider boards of size $2^n \times 2^n$ for $n = 1, 2, \ldots$.
- Base case: show that tiling is possible for 2×2 board.
- Inductive hypothesis: assume $2^n \times 2^n$ board can be tiled
- Inductive step: assuming $2^k \times 2^k$ board can be tiled, show that $2^{k+1} \times 2^{k+1}$ board can be tiled.
- Draw conclusion
 - Chess-board (8x8) is a special case of this argument
 - We have proved special case of chess-board by proving generalized problem!
Base case

- For a 2x2 board, it is trivial to tile the board regardless of which one of the four pieces has been cut.

4x4 case

- Divide 4x4 board into four 2x2 sub-boards.
- One of the four sub-boards has the missing piece.
- That sub-board can be tiled since it is a 2x2 board with a missing piece.
- Tile the center squares of the three remaining sub-boards as shown.
- This leaves 3 2x2 boards with a missing piece, which can be tiled.

8x8 case

- Divide board into 4 sub-boards and tile the center squares of the three complete sub-boards.
- The remaining portions of the 4 sub-boards can be tiled by assumption about 4x4 boards.

Inductive proof

- Claim: Any board of size $2^n \times 2^n$ with one missing square can be tiled.
- Proof: by induction.
 - Base case: (n = 1) trivial since board with missing piece is isomorphic to tile.
 - Inductive hypothesis: board of size $2^k \times 2^k$ can be tiled
 - Inductive step: consider board of size $2^{k+1} \times 2^{k+1}$
 - Divide board into four equal sub-boards of size $2^k \times 2^k$
 - One of the sub-boards has the missing piece; by inductive hypothesis, this can be tiled.
 - Tile the central squares of the remaining three sub-boards as discussed before.
 - This leaves three sub-boards with a missing square each, which can be tiled by inductive hypothesis.
 - Conclusion: any board of size $2^n \times 2^n$ with one missing square can be tiled.
When induction fails

• Sometimes, an inductive proof strategy for some proposition may fail.
• This does not necessarily mean that the proposition is wrong.
 – It just means that the inductive strategy you are trying fails.
• A different induction or a different proof strategy altogether may succeed.

Tiling example (contd.)

• Let us try a different inductive strategy which will fail.
• Proposition: any \(n \times n \) board with one missing square can be tiled.
• Problem: a \(3 \times 3 \) board with one missing square has 8 remaining squares, but our tile has 3 squares. Tiling is impossible.
• Therefore, any attempt to give an inductive proof is proposition must fail.
• This does not say anything about the 8x8 case.

Strong induction

• We want to prove that some property \(P \) holds for all integers.
• Weak induction:
 – \(P(0) \): show that property \(P \) is true for integer 0
 – Assume \(P(k) \) for a particular integer \(k \).
 – \(P(k) \Rightarrow P(k+1) \): show that if property \(P \) is true for integer \(k \), it is true for \(k+1 \)
 – Conclude that \(P(n) \) holds for all integers \(n \).
• Strong induction:
 – \(P(0) \): show that property \(P \) is true for integer 0
 – Assume \(P(0) \) and \(P(1) \) … and \(P(k) \) for particular \(k \).
 – \(P(0) \) and \(P(1) \) and … and \(P(k) \) \(\Rightarrow P(k+1) \): show that if \(P \) is true for integers less than or equal to \(k \), it is true for \(k+1 \)
 – Conclude that \(P(n) \) holds for all integers \(n \).
• For our purpose, both proof techniques are equally powerful.

Editorial comments

• Induction is a powerful technique for proving propositions.
• We used recursive definition of functions as a step towards formulating inductive proofs.
• However, recursion is useful in its own right.
• There are closed-form expressions for sum of cubes of natural numbers, sum of fourth powers etc. (see any book on number theory).