Problem 1 [15 points] General Concepts

Answer the following questions. Questions with blanks require only one word. Be concise and clear.

1a [1 point] The correct spelling of your COM S/ENGRD 211 instructor’s last name is SCHWARTZ.

1b [2 points] What is a data structure?

collection that holds information

1c [2 points] What is the difference between a list and a set?

set: collection of unique items, no repeats
list: imposes order on the collection and allows repeated

1d [1 point] Why is an array not a dynamic data structure?

has fixed size after created

1e [1 point] Give one example of a dynamic data structure: list.

1f [1 point] Because of dynamic binding, Java uses the actual type of an object to access a method.

1g [1 point] Because of static binding, Java uses the reference type to access a field.

1h [2 points] Write the output for the following code for when the user runs the program with this command line:

```java
> java args args "args" "\args\"
```

```java
public class args {
    public static void main(String[] args) {
        for ( int arg = 0 ; arg < args.length ; arg++ )
            System.out.print( args[arg] +" ");
    }
}
```

args args "args"

1i [2 points] Distinguish between a shallow and deep clone. No answers about sheep or cults…just data structures.

shallow: copy of “top” or first reference to data structure
depth: all items in a data structure are copied

1j [2 points] Distinguish between height and depth in a tree data structure.

height: path from node to a leaf in a tree
depth: path from the root to a node in a tree
Problem 2 [5 points] Induction

Use induction to prove that \(1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}\) is true. For full credit, you must clearly state the base case, induction hypothesis, inductive step, and conclusion in your proof.

Base Case:
try \(n=1\)
LHS: \(1^2 = 1\)
RHS: \(1^2 = 1\)
LHS = RHS, so BC is OK

Inductive Hypothesis:
Assume that \(\sum(i^2, i=1..n) = n(n+1)(2n+1)/6\) is true

Inductive Step:
See if relationship is true for the \(k+1\) value.

\[
\text{RHS} = (k+1)(k+1+1)(2(k+1)+1)/6 = (k+1)(2k^2+7k+6)/6 = (2k^3+9k^2+13k+6)/6
\]

\[
\text{LHS} = \sum(i^2, i=1..k+1) = \sum(i^2, i=1..k) + (1+k)^2 = k(k+1)(2k+1)/6 + (1+k)^2 \quad \text{(substitute hypothesis for } \sum(i^2, i=1..k))
\]

\[
= (2k^3+3k^2+k+1)/6 + (6k^2+12k+6)/6 = (2k^3+9k^2+13k+6)/6
\]

Conclusion:
LHS = RHS, so the hypothesis is indeed true. Hallelujah!
Problem 3 [10 points] Recursion

Using recursion, complete method \texttt{mod(int n, int d)}, which returns the remainder, or \textit{modulus}, of \(n \div d \). Note that we do \textit{not} imply integer division of \(n \) by \(d \)! You may \textit{not} use the \texttt{Math} class, division (\texttt{/}), multiplication (\texttt{*}), the modulus operator (\texttt{\%}), or any helper methods and classes. Assume that \(n \geq 0 \) and \(d \geq 1 \).

public class Problem3 {

 public static void main(String[] args) {

 System.out.println(mod(11,4)); // output: 3
 System.out.println(mod(10,5)); // output: 0
 System.out.println(mod(1,7)); // output: 1

 }

 // Return remainder of n divided by d. See problem specifications above:
 public static int mod(int n, int d) {

 if (n < d)
 return n;
 else return mod(n-d,d);

 } // Method mod

} // Class Problem3
Problem 4 [15 points] Inheritance, Subtyping, Fun With Java!

4a [12 points] In the box on the next page, write the output that the following program will generate. Hint: There are 7 output values.

4b [3 points] On the next page, answer this question: Would removing the // in front of the statement r4.print(1,2) cause an error when recompiling the program? Why or why not?

```java
public class Problem4 {
    public static void main(String[] args) {
        A r1 = new B(1);
        A r2 = new C();
        B r3 = (B) r2;
        System.out.println(r3.y);
        I1 r4 = new C();
        // r4.print(1,2);
    }
}

abstract class A {
    public int x = 3;
    public int y = x;
    public A() { print(x+2); }
    public void print() { System.out.println(x); }
    public void print(int x) { print(); }
}

class B extends A {
    public int y = x;
    public B(int x) { x = this.x; print(x+3); }
    public B() { }
    public void print() { super.print(); }
    public void print(int x) { System.out.println(x+1); }
    private void print(int x, int y) { print(x*y); }
}

class C extends B implements I1 {
    C() { super(3); }
    public void print(int x, int y) { print(x-y); }
    public void m1() { }
}

interface I1 { }
```
Problem 4a output:

```
6
7
6
7
3
6
7
```

Problem 4b answer:

```
causes error
method needs to be specified in interface because the method name is bound at compile time
```
Problem 5 [30 points] Singly-Linked Lists, Building Lists, Traversing Lists

Background: A circular linked list is a linked list for which the tail points to the head. To create such a list, you can create a regular singly linked list, starting with the head. By making the head the next element of the tail, you have formed a circular list. By maintaining a reference to the original head, you have an entry node that links to the entire circular list.

Problem: You need to complete class Problem5 by completing two methods:

- `createCircle(int nodes)`. Given a user-input number of nodes, this method creates a circular linked list composed of nodes number of nodes with an entry node called `firstNode`, which is a class variable in Problem5.
- `searchCircle()`. This method searches for a node with the stored value of 0 in the circular linked list that is referenced by `firstNode`. If a node with 0 is found, the method returns `true`. Otherwise, it returns `false`. The method assumes the list contains at least one element.

Class Problem5 uses class Node, which uses class MyMath. These classes are written at the end of the problem. No credit will be given for using arrays or any API data structure (e.g., Vectors and ArrayLists).

Example:

If the user runs the program for 4 nodes as > `java Problem5 4`, the program might generate the values that are shown in the circular list below. Since at least one node contains 0, the program would return `true`.

```
firstNode

1
2
3
0
```

The problem continues on the next page.
public class Problem5 {

 public static Node firstNode; // entry node into circular list

 public static void main(String[] args) {
 createCircle(Integer.parseInt(args[0])); // create list of input # of nodes
 System.out.println(searchCircle()); // report search of circle for 0
 }

 // Create a circular linked list with user-input number of nodes.
 // List uses firstNode as the first node to start the list:
 public static void createCircle(int nodes) {

 firstNode = new Node();
 int count = 1;
 Node nextNode = firstNode;
 while (count < nodes) {
 nextNode.next = new Node();
 nextNode = nextNode.next;
 count++;
 }
 nextNode.next = firstNode;

 } // Method createCircle
// Search the circular linked list for the integer 0.
// Return true if found and false if not found.
// Assume the list is non-empty with at least one node:
public static boolean searchCircle() {

 Node finger = firstNode.next;
 int value = firstNode.value;
 while ((value != 0) && (finger != firstNode)) {
 value = finger.value;
 finger = finger.next;
 }
 return (value==0);

} // Method searchCircle

} // Class Problem5

class Node {
 public final int value = MyMath.randInt(0,4);
 public Node next;
} // Class Node

class MyMath {
 // Return a random int between low and high, inclusive:
 public static int randInt(int low, int high) {
 return (int) (Math.random()*(high-low+1)) + (int) low;
 }
} // Class MyMath
Problem 6 [25 points] Trees, Expression Parsing

Background: A pretty simple expression (PSE) has the following grammar:

- $E \rightarrow \text{int}
- E \rightarrow (E + E)

Problem: You will complete a program that parses a user-input PSE into a tree and then prints the contents of that tree, where each operator (+) is written between its operands. To do so, finish these methods:

- **makeTree**: This method stores the root of the expression tree and controls the parsing of the PSE.
- **toString**: You need to complete this method in each class that implements INode. Depending on the class, toString returns a description of the node in the form of a String. By printing the tree in main, your program will print the entire tree, which gives the desired output, as we have demonstrated in the example session.

Additional Specifications:

- Assume that the user enters only one completely legal PSE at the command-window. Do not check for errors.
- Use CS211In. We have provided a reminder of constants and methods you may need, below.
- All nodes in the tree must implement the INode interface, which we have also provided.

Example Session:

```java
> java PSE
Enter a PSE: ( ( 1 + 2 ) + ( 3 + ( 4 + 5 ) ) )
Result: 1+2+3+4+5
```

Reminder of CS211In:

```java
interface CS211InInterface {
    int INTEGER = -1, WORD = -2, OPERATOR = -3, EOF = -4;
    int peekAtKind();        // returns "type" (int!) of token w/o "eating" it
    int getInt();            // reads an int and returns it ; else complains
    String getWord();        // reads a word and returns it ; else complains
    char getOp();            // reads an op and returns it ; else complains
    boolean check(char c);   // is the next thing c?
    void pushBack();         // back up by one token
}
```

```java
public class Problem6 {
    private static CS211InInterface fin = new CS211In();
    public static void main(String[] args) {
        System.out.print("Enter a PSE: ");
        System.out.println("Result: "+(new ParseTree(fin)));
        fin.close();
    }
} // Class Problem6
```

```java
interface INode {
    public String toString();
}
```

The problem continues on the next page.
```java
class ParseTree implements INode {
    private INode root;
    public ParseTree(CS211InInterface fin) {
        root = makeTree(fin);
    }
    // Build a PSE:
    private INode makeTree(CS211InInterface fin) {
        switch( fin.peekAtKind() ) {
            // E -> int
            case CS211In.INTEGER:
                int i = fin.getInt();
                return new IntNode(i);
            // E -> (E1 + E2)
            case CS211In.OPERATOR:
                fin.check('(');
                INode leftExpr = makeTree(fin);
                fin.check('+');
                INode rightExpr = makeTree(fin);
                fin.check(')');
                return new AddNode(leftExpr, rightExpr);
        } // end switch
        return null;
    }
} // Method makeTree
```
// Return String of entire tree using root.
// If tree is null, return empty string:
public String toString() {

if(root==null) return "";
return root.toString();
}

class AddNode implements INode {

private INode leftExpr;
private INode rightExpr;
public AddNode(INode leftExpr, INode rightExpr) {
 this.leftExpr=leftExpr;
 this.rightExpr=rightExpr;
}

// Return String description of AddNode:
public String toString() {

 return leftExpr + "+" + rightExpr;
 // Why no toString.leftExpr and toString.rightExpr?
 // I’m forcing toString to happen by adding a String
 // with "+".
}

}

class IntNode implements INode {

private int value;
public IntNode(int value) {
 this.value = value;
}

// Return String description of value:
public String toString() {

 return ""+value;
}

}
Bonus: Do not work on these problems until you have thoroughly finished all core-point (required) problems!

B0) [1 bonus point] The answer to this other question (today in lecture 3/6): 22

B1) [1 bonus point] What is the answer to this question? 17.2

B2) [1 bonus point] What does UoS stand for? You must correctly spell it for full credit.
University of Saskatchewan (pg 242 in DS&SD)

B3) [9 bonus points] Correctly spell the last name of each TA for this course [1 point/correct last name].
Conlon, Fink, Flynn, Kulkarni, Lim, Lin, Niculescu-Mizil, Qiu, Rosofsky

B4) [1 bonus point] What is the complete title of the book that DIS refers to as DS&SD?
Data Structures and Software Development in an Object-Oriented Domain: Java Edition

B5) [1 bonus point] Who is Vintersorg?
lead vox in Borknagar; also an eponymously named band and other side projects

B6) [1 bonus point] Which consultant(s) has (have) the most number of hours according to the website?
Kumar

B7) [3 bonus points] What is the correct output for the following program? Yes, it really does work.

```java
class X {
    int X;
    X(int X) { this(X,X++); this.X=X; }
    X(int X, int XX) { this.X+=XX+=this.X+X++; }
    int X(int X) { X(this); return X; }
    X X(X X) { X.X+=++X.XX; return new X(X.X); }
} // class X

public class x {
    static int XX;
    public static void main(String[] XXX) {
        X X = new X( (new X(++x.XX)).X );
        X(X.X(X.X));
        X(X.X(X).X);
        X(X(X.X(X))); // method main
    }
    static int X(X X) {return X.X;}
    public static void X(int X) {System.out.println(X);}
} // class x
```

// Output1: 3
// Output2: 9
// Output3: 13