Previous Lecture (and Discussion):
- Branching (`if, elseif, else, end`)
- Relational operators (`<, >=, ==, ~=, …, etc.`)
- Logical operators (`&&, ||, ~`)

Today’s Lecture:
- Logical operators and “short-circuiting”
- More branching—nesting
- Top-down design

Announcements:
- Discussion this week in Upson B7 computer lab
- Project 1 (P1) due Thursday at 11pm
- Submit real .m files (plain text, not from a word processing software such as Microsoft Word)
- Register your clicker using the link on the course website
Consider the quadratic function

\[q(x) = x^2 + bx + c \]

on the interval \([L, R]\):

- Is the function strictly increasing in \([L, R]\)?
- Which is smaller, \(q(L)\) or \(q(R)\)?
- What is the minimum value of \(q(x)\) in \([L, R]\)?
Minimum is at L, R, or xc

$$q(x) = x^2 + bx + c$$

$$x_c = \frac{-b}{2}$$
Modified Problem 3

Write a code fragment that prints “yes” if x_c is in the interval and “no” if it is not.
\[q(x) = x^2 + bx + c \]

\[x_c = -\frac{b}{2} \]

No!
So what is the requirement?

% Determine whether xc is in
% [L,R]
xc = -b/2;

if ________________
 disp(‘Yes’)
else
 disp(‘No’)
end
So what is the requirement?

```matlab
% Determine whether xc is in [L,R]
xc = -b/2;

if L<=xc && xc<=R
    disp('Yes')
else
    disp('No')
end
```
The value of a boolean expression is either true or false.

\[(L \leq xc) \land \land (xc \leq R)\]

This (compound) boolean expression is made up of two (simple) boolean expressions. Each has a value that is either true or false.

Connect boolean expressions by boolean operators:

and	or	not
\&\& | \| | ~
Logical operators

&& logical and: Are both conditions true?
E.g., we ask “is $L \leq x_c$ and $x_c \leq R$?”
In our code: $L \leq x_c$ && $x_c \leq R$
Logical operators

&& logical and: Are both conditions true?

E.g., we ask “is \(L \leq x_c \) and \(x_c \leq R \)?”

In our code: \(L \leq x_c \) && \(x_c \leq R \)

|| logical or: Is at least one condition true?

E.g., we can ask if \(x_c \) is outside of \([L,R]\),

i.e., “is \(x_c < L \) or \(R < x_c \)?”

In code: \(x_c < L \) || \(R < x_c \)
Logical operators

&& logical **and**: Are both conditions true?
E.g., we ask “is \(L \leq x_c \) and \(x_c \leq R \)?”
In our code: \(L \leq x_c \) \&\& \(x_c \leq R \)

|| logical **or**: Is at least one condition true?
E.g., we can ask if \(x_c \) is outside of \([L,R]\),
i.e., “is \(x_c < L \) or \(R < x_c \)?”
In code: \(x_c < L \) || \(R < x_c \)

~ logical **not**: Negation
E.g., we can ask if \(x_c \) is not outside \([L,R]\).
In code: \(\sim (x_c < L \) || \(R < x_c) \)
Logical operators

&& logical and: Are both conditions true?
E.g., we ask “is $L \leq x_c$ and $x_c \leq R$?”
In our code: $L \leq x_c$ && $x_c \leq R$

|| logical or: Is at least one condition true?
E.g., we can ask if x_c is outside of $[L,R]$,
i.e., “is $x_c < L$ or $R < x_c$?”
In code: $x_c < L$ || $R < x_c$

~ logical not: Negation
E.g., we can ask if x_c is not outside $[L,R]$.
In code: ~($x_c < L$ || $R < x_c$)
The logical AND operator:

```
F  F
F  T
T  F
T  T
```
The logical AND operator: `&&`

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td></td>
<td>T</td>
</tr>
</tbody>
</table>
The logical OR operator: \(\lor \)

<table>
<thead>
<tr>
<th>False (F)</th>
<th>True (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>False (F)</td>
<td>False (F)</td>
</tr>
<tr>
<td>False (F)</td>
<td>True (T)</td>
</tr>
<tr>
<td>True (T)</td>
<td>False (F)</td>
</tr>
<tr>
<td>True (T)</td>
<td>True (T)</td>
</tr>
</tbody>
</table>
The logical OR operator: \lor

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
The logical NOT operator: ~
The logical NOT operator: ~

<table>
<thead>
<tr>
<th></th>
<th>~</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
“Truth table”

X, Y represent boolean expressions.
E.g., d > 3.14

| X | Y | X && Y | X || Y | \sim Y |
|---|---|---------|---------|--------|
| F | F | F | F | F |
| F | T | | | |
| T | F | | | |
| T | T | T | T | T |
"Truth table"

X, Y represent boolean expressions. E.g., d>3.14

| X | Y | X && Y “and” | X || Y “or” | ~Y “not” |
|---|---|-------------|------------|--------|
| F | F | F | F | T |
| F | T | F | T | F |
| T | F | F | T | T |
| T | T | T | T | F |

X, Y represent boolean expressions. E.g., d>3.14
“Truth table”

Matlab uses 0 to represent false, 1 to represent true.

| X | Y | X && Y | X || Y | ~Y |
|---|---|--------|-------|----|
| 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 |
Logical operators “short-circuit”

A `&&` expression short-circuits to false if the left operand evaluates to `false`.

A `||` expression short-circuits to _________________ if

Entire expression is false since the first part is false.
Logical operators “short-circuit”

A \&\& expression short-circuits to false if the left operand evaluates to \textit{false}.

A || expression short-circuits to \textit{true} if the left operand evaluates to \textit{true}.

Entire expression is false since the first part is false.
Always use logical operators to connect simple boolean expressions

Why is it wrong to use the expression

\[L \leq xc \leq R \]

for checking if \(xc \) is in \([L,R]\)?

Example: Suppose \(L \) is 5, \(R \) is 8, and \(xc \) is 10. We know that 10 is not in \([5,8]\), but the expression \(L \leq xc \leq R \) gives…
Variables a, b, and c have whole number values. True or false: This fragment prints “Yes” if there is a right triangle with side lengths a, b, and c and prints “No” otherwise.

```matlab
if a^2 + b^2 == c^2
    disp('Yes')
else
    disp('No')
end
```

A: true
B: false
a = 5;
b = 3;
c = 4;
if \ (a^2+b^2==c^2)
 disp('Yes')
else
 disp('No')
end

This fragment prints “No” even though we have a right triangle!
a = 5;
b = 3;
c = 4;
if ((a^2+b^2==c^2) || (a^2+c^2==b^2)...) || (b^2+c^2==a^2))
 disp('Yes')
else
 disp('No')
end
Consider the quadratic function

\[q(x) = x^2 + bx + c \]

on the interval \([L, R]\):

- Is the function strictly increasing in \([L, R]\)?
- Which is smaller, \(q(L)\) or \(q(R)\)?
- What is the minimum value of \(q(x)\) in \([L, R]\)?
\[q(x) = x^2 + bx + c \]

\[x_c = -\frac{b}{2} \]

min at \(R \)
Conclusion

If x_c is between L and R

Then min is at x_c

Otherwise

Min value is at one of the endpoints
Start with pseudocode

If xc is between L and R

Min is at xc

Otherwise

Min is at one of the endpoints

We have decomposed the problem into three pieces! Can choose to work with any piece next: the if-else construct/condition, min at xc, or min at an endpoint
Set up structure first: if-else, condition

if \(L \leq xc \) \&\& \(xc \leq R \)

Then min is at \(xc \)

else

Min is at one of the endpoints

end

Now refine our solution-in-progress. I’ll choose to work on the if-branch next
Refinement: filled in detail for task “min at xc”

if \(L \leq xc \leq R \)
\[\text{\% min is at } xc \]
\[q_{\text{Min}} = xc^2 + b*xc + c; \]

else

Min is at one of the endpoints

end

Continue with refining the solution... else-branch next
Refinement: detail for task “min at an endpoint”

if \(L \leq xc \) \&\& \(xc \leq R \)
 \% min is at \(xc \)
 qMin = xc^2 + b*xc + c;
else
 \% min is at one of the endpoints
 if \% xc left of bracket
 \% min is at L
 else \% xc right of bracket
 \% min is at R
 end
end

Continue with the refinement, i.e., replace comments with code
Refinement: detail for task “min at an endpoint”

\[
\text{if } L \leq xc \text{ \&\& } xc \leq R \\
\quad \% \text{ min is at } xc \\
\quad qMin = xc^2 + b*xc + c; \\
\text{else} \\
\quad \% \text{ min is at one of the endpoints} \\
\quad \text{if } xc < L \\
\quad \quad qMin = L^2 + b*L + c; \\
\quad \text{else} \\
\quad \quad qMin = R^2 + b*R + c; \\
\text{end} \\
\text{end}
\]
Final solution (given b,c,L,R,xc)

```matlab
if L<=xc && xc<=R
    qMin= xc^2 + b*xc + c;
else
    if xc < L
        qMin= L^2 + b*L + c;
    else
        qMin= R^2 + b*R + c;
    end
end
```

See quadMin.m
quadMinGraph.m
Notice that there are 3 alternatives \(\Rightarrow \) can use elseif!

\[
\text{if } L \leq xc \text{ && } xc \leq R \\
\quad \text{% min is at xc} \\
\quad qMin = xc^2 + b*xc + c;
\]

\[
\text{elseif } xc < L \\
\quad qMin = L^2 + b*L + c;
\]

\[
\text{else} \\
\quad qMin = R^2 + b*R + c;
\]

\[
\text{end}
\]
An algorithm is an idea. To use an algorithm you must choose a programming language and implement the algorithm.
Does this program work?

```matlab
score = input('Enter score: ');  
if score>55  
    disp('D')  
elseif score>65  
    disp('C')  
elseif score>80  
    disp('B')  
elseif score>93  
    disp('A')  
else  
    disp('Not good...')  
end
```

A: yes

B: no