- Previous Lecture:
 - 2-d array—matrix

- Today’s Lecture:
 - More examples on matrices
 - Optional reading: contour plot (7.2, 7.3 in Insight)

- Announcement:
 - Review your prelim and re-do the questions on which you didn’t do well, perhaps with the help of a member of the course staff. Do not just read the solutions!

Storing and using data in tables

A company has 3 factories that make 5 products with these costs:

```
   10 36 22 15 62
   12 35 20 12 66
   13 37 21 16 59
```

What is the best way to fill a given purchase order?

Pattern for traversing a matrix M

```
[r, c] = size(M)
for r = 1:r
  for c = 1:c
    % At row r
    % At column c (in row r)
    % Do something with M(r,c) ...
  end
end
```

A Cost/Inventory Problem

- A company has 3 factories that make 5 different products
- The cost of making a product varies from factory to factory
- The inventory/capacity varies from factory to factory

Problems

A customer submits a purchase order that is to be filled by a single factory.

1. How much would it cost a factory to fill the order?
2. Does a factory have enough inventory/capacity to fill the order?
3. Among the factories that can fill the order, who can do it most cheaply?

Cost Array

```
   10 36 22 15 62
   12 35 20 12 66
   13 37 21 16 59
```

The value of $C(i, j)$ is what it costs factory i to make product j.

Inventory (or Capacity) Array

\[
\begin{array}{cccccc}
38 & 5 & 99 & 34 & 42 \\
82 & 19 & 83 & 12 & 42 \\
51 & 29 & 21 & 56 & 87 \\
\end{array}
\]

The value of \(\text{Inv}(i,j) \) is the inventory in factory \(i \) of product \(j \).

Purchase Order

\[
\begin{array}{cccccc}
1 & 0 & 12 & 29 & 5 \\
\end{array}
\]

The value of \(\text{PO}(j) \) is the number of product \(j \)'s that the customer wants.

Cost for factory \(i \):

\[
s = 0; \quad \% \text{Sum of cost} \\
\text{for } j=1:5 \\
s = s + C(i,j) \times \text{PO}(j) \\
\text{end}
\]

Encapsulate...

\[
\begin{function}
\text{TheBill} = \text{iCost}(i,C,\text{PO}) \\
\% \text{The cost when factory } i \text{ fills the} \\
\% \text{purchase order}
\end{function}
\]

\[
\begin{align*}
\text{nProd} &= \text{length(PO)}; \\
\text{TheBill} &= 0; \\
\text{for } j=1:\text{nProd} \\
& \quad \text{TheBill} = \text{TheBill} + C(i,j) \times \text{PO}(j); \\
\end{align*}
\]

Finding the Cheapest

\[
\begin{align*}
i\text{Best} &= 0; \quad \text{minBill} = \text{inf}; \\
\text{for } i=1:\text{nFact} \\
& \quad i\text{Bill} = \text{iCost}(i,C,\text{PO}); \\
& \quad \text{if } i\text{Bill} < \text{minBill} \\
& \quad \quad \% \text{Found an Improvement} \\
& \quad \quad i\text{Best} = i; \quad \text{minBill} = i\text{Bill}; \\
& \quad \text{end} \\
\end{align*}
\]

\(\text{inf} \) – a special value that can be regarded as positive infinity

\[
\begin{align*}
x &= 10/0 \quad \text{assigns inf to } x \\
y &= 1+x \quad \text{assigns inf to } y \\
z &= 1/x \quad \text{assigns 0 to } z \\
w < \text{inf} \quad \text{is always true if } w \text{ is numeric}
\end{align*}
\]
Inventory/Capacity Considerations

What if a factory lacks the inventory/capacity to fill the purchase order?

Such a factory should be excluded from the find-the-cheapest computation.

Who Can Fill the Order?

<table>
<thead>
<tr>
<th>Inv</th>
<th>38</th>
<th>5</th>
<th>99</th>
<th>34</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO</td>
<td>1</td>
<td>0</td>
<td>12</td>
<td>29</td>
<td>5</td>
</tr>
</tbody>
</table>

Yes

<table>
<thead>
<tr>
<th>Inv</th>
<th>82</th>
<th>19</th>
<th>83</th>
<th>12</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO</td>
<td>51</td>
<td>29</td>
<td>21</td>
<td>56</td>
<td>87</td>
</tr>
</tbody>
</table>

Yes

Wanted: A True/False Function

DO is "true" if factory \(i \) can fill the order.

DO is "false" if factory \(i \) cannot fill the order.

Example: Check inventory of factory 2

Method 1: check the inventory for every product

Still True...

\[
\text{DO} = \text{DO} \land (\text{Inv}(2,1) \geq \text{PO}(1))
\]

Still True...

\[
\text{DO} = \text{DO} \land (\text{Inv}(2,2) \geq \text{PO}(2))
\]
function DO = iCanDo(i,Inv,PO)
% DO is true if factory i can fill
% the purchase order. Otherwise, false
nProd = length(PO);
DO = 1;
for j = 1:nProd
 DO = DO && (Inv(i,j) >= PO(j));
end

Encapsulate...

function DO = iCanDo(i,Inv,PO)
% DO is true if factory i can fill
% the purchase order. Otherwise, false
nProd = length(PO);
j = 1;
while j<=nProd && Inv(i,j)>=PO(j)
 j = j+1;
end
DO = _________;

Encapsulate...

Back To Finding the Cheapest
iBest = 0; minBill = inf;
for i=1:nFact
 iBill = iCost(i,C,PO);
 if iBill < minBill
 % Found an Improvement
 iBest = i; minBill = iBill;
 end
end

Back To Finding the Cheapest
iBest = 0; minBill = inf;
for i=1:nFact
 if iCanDo(i,Inv,PO)
 iBill = iCost(i,C,PO);
 if iBill < minBill
 % Found an Improvement
 iBest = i; minBill = iBill;
 end
 end
end

Finding the Cheapest
C
10 36 22 15 62
12 35 20 12 66
13 37 21 16 59

PO 1 0 12 29 5

As computed by iCost

As computed by iCanDo

Initialize vectors/matrices if dimensions are known
...instead of “building” the array one component at a time

% Initialize y
x=linspace(a,b,n);
y=zeros(1,n);
for k=1:n
 y(k)=myF(x(k));
end

% Build y on the fly
x=linspace(a,b,n);
for k=1:n
 y(k)=myF(x(k));
end

Much faster for large n!
Concatenating 2 vectors—copy 2 vectors into a new one

% given row vectors x and y
v = zeros(1, length(x) + length(y));
for k = 1:length(x)
 v(k) = x(k);
end
for k = 1:length(y)
 v(length(x) + k) = y(k);
end

This is non-vectorized code—operations are performed on one component (scalar) at a time

Split a vector in 2—copy values into 2 vectors

% given row vector v
s = ceil(rand*length(v)); % split pt
x = zeros(1, s);
y = zeros(1, length(v)-s);
for k = 1:s
 x(k) = v(k);
end
for k = 1:length(y)
 y(k) = v(s+k);
end

This is non-vectorized code—operations are performed on one component (scalar) at a time

Accessing a submatrix

M =
2 -1 5 0 -3
3 8 6 7
5 -3 8.5 9 10
52 81 5 7 2

- M refers to the whole matrix
- M(3,5) refers to one component of M

Split a vector in 2—copy values into 2 vectors

% given row vector v
s = ceil(rand*length(v)); % split pt
x = zeros(1, s);
y = zeros(1, length(v)-s);
for k = 1:s
 x(k) = v(k);
end
for k = 1:length(y)
 y(k) = v(s+k);
end

Below is vectorized code: multiple components (subvectors) are accessed at the same time:
x = v(1:s);
y = v(s+1:length(v));