12. Loops and Logic

Topics:

- Loop-Body Return
- The Idea of a Random Walk
- Showcase: Open-Ended Iteration
- Showcase: Computing Averages
- Showcase: Top-Down Development
Loop-Body Returns
Loop-Body Returns

Another way to terminate a loop.

Uses the fact that in a function, control is passed back to the calling program as soon as a return statement is encountered.
A Problem

Write a function

\[\text{MyFind(char, s)} \]

that returns True if character char is in string s and returns False otherwise.
def MyFind(char, s):
 k = 0
 while k < len(s) and char != s[k]:
 k = k + 1
 if k == len(s):
 return False
 else:
 return True

When the loop ends, if k == len(s) is True, then we never found an instance of char.
The function “jumps out of the loop” and returns True should it encounter an instance of char. If the loop runs to completion, that means there is no instance of char.
For Loop Solution with a Loop Body return

def MyFind(char,s):
 for k in range(len(s)):
 if s[k]==char:
 return True
 return False

The function “jumps out of the loop” and returns True should it encounter an instance of char. If the loop runs to completion, that means there is no instance of char.
The function “jumps out of the loop” and returns True should it encounter an instance of char. If the loop runs to completion, that means there is no instance of char.
The Random Walk Idea

We have a “runway” made up of 1x1 tiles.

There are $2L+1$ tiles. ($L = 5$ in the above.)

We call L the “length of the runway.”

The center tile is located at $x = 0$.
The Random Walk Idea

Starting at the center tile, a robot hops from tile to tile according to a coin flip.

Heads: Hop right one tile.
Tails: Hop left one tile.

The simulation over when robot reaches either end (a.k.a. the boundary) of the runway.
The Random Walk Idea

Question:

Given the runway length L, what is the average number of hops required for the robot to reach the boundary?
from random import randint as randi

def RandomWalk(L):
 # Returns the number of hops for
 # a single random walk.

def AveRandomWalk(L,n):
 # Simulate n length-L random walks and
 # returns average number of required hops

if __name__ == '__main__':
 # Display the value of AveRandomWalk
 # for various values of L
The Application Script

Check out the cases $L = 5, 10, 15, \ldots, 20, 25, 30, 35, 40$:

```python
if __name__ == '__main__':
    n = 1000  # Number of trials
    for L in range(5, 45, 5):
        print L, AveRandomWalk(L, n)
```
The Function
AveRandomWalk(L,n)

def AveRandomWalk(L,n):
 s = 0
 for k in range(0,n):
 RequiredHops = RandomWalk(L)
 s += RequiredHops
 ave = float(s)/float(n)
 return ave
def RandomWalk(L):
 hops = 0; x = 0
 while abs(x) < L:
 r = randi(0,1)
 if r == 0:
 x = x + 1
 else:
 x = x - 1
 hops += 1
 return hops

The Function RandomWalk(L)

Initializations.
The robot starts at x = 0.
The Function
RandomWalk(L)

def RandomWalk(L):
 hops = 0; x = 0
 while abs(x) < L:
 r = randi(0,1)
 if r == 0:
 x = x + 1
 else:
 x = x - 1
 hops += 1
 return hops

If the condition is True, the robot has not yet reached the boundary and we keep iterating..
The Function \texttt{RandomWalk}(L)

\begin{verbatim}
def RandomWalk(L):
 hops = 0; x = 0
 while abs(x) < L:
 r = randi(0,1)
 if r == 0:
 x = x + 1
 else:
 x = x - 1
 hops += 1
 return hops
\end{verbatim}

We simulate the coin toss by picking 0 or 1 at random.
The Function

RandomWalk (L)

def RandomWalk(L):
 hops = 0; x = 0
 while abs(x) < L:
 r = randint(0,1)
 if r == 0:
 x = x + 1
 else:
 x = x - 1
 hops += 1
 return hops
The While Loop

To more fully understand how this works, let's look at the execution of this while loop:

\[
x = 0
\]

while abs(x) < 5:
 r = randi(0,1)
 if r == 0:
 x = x+1
 else:
 x = x-1
x = 0
while abs(x) < 5:
 r = randi(0,1)
 if r == 0:
 x = x+1
 else:
 x = x-1
Understanding the While Loop

```
x = 0
while abs(x) < 5:
    r = randi(0,1)
    if r == 0:
        x = x+1
    else:
        x = x-1
```

Assume r = 0
Coin = Heads
Hop Right
Understanding the While Loop

The value of \(x \) is increased from 0 to 1.

\[
x = 0 \\
\text{while } \text{abs}(x) < 5: \\
r = \text{randi}(0,1) \\
\text{if } r == 0: \\
\quad x = x+1 \\
\text{else:} \\
\quad x = x-1
\]
Understanding the While Loop

abs(x) < 5 is true.

Robot not at boundary.

Loop continues.

x = 0
while abs(x) < 5:
 r = randi(0,1)
 if r == 0:
 x = x+1
 else:
 x = x-1
x = 0
while abs(x) < 5:
 r = randi(0,1)
 if r == 0:
 x = x+1
 else:
 x = x-1

Assume r = 1
Coin = Tails
Hop Left
Understanding the While Loop

x = 0
while abs(x) < 5:
 r = randi(0,1)
 if r == 0:
 x = x+1
 else:
 x = x-1

The value of x is decreased from 1 to 0.
Understanding the While Loop

x = 0
while abs(x) < 5:
 r = randi(0,1)
 if r == 0:
 x = x+1
 else:
 x = x-1
abs(x) < 5 is true.
Robot not at boundary.
Loop continues
x = 0
while abs(x) < 5:
 r = randi(0, 1)
 if r == 0:
 x = x+1
 else:
 x = x-1

Assume r = 0
Coin = Heads
Hop Right
Understanding the While Loop

x = 0
while abs(x) < 5:
 r = randi(0,1)
 if r == 0:
 x = x + 1
 else:
 x = x - 1

The value of x is increased from 0 to 1.
Understanding the While Loop

abs(x) < 5 is true.
Robot not at boundary.
Loop continues

```
x = 0
while abs(x) < 5:
    r = randi(0,1)
    if r == 0:
        x = x+1
    else:
        x = x-1
```

-5 -4 -3 -2 -1 0 1 2 3 4 5
x = 0
while abs(x) < 5:
 r = randi(0,1)
 if r == 0:
 x = x + 1
 else:
 x = x - 1
The value of \(x \) is increased from 1 to 2.
Understanding the While Loop

abs(x) < 5 is true.
Robot not at boundary.
Loop continues

\[
x = 0 \\
while \ abs(x) < 5: \\
\quad r = \text{randi}(0,1) \\
\quad if r == 0: \\
\quad\quad x = x+1 \\
\quad else: \\
\quad\quad x = x-1
\]
x = 0
while abs(x) < 5:
 r = randi(0,1)
 if r == 0:
 x = x+1
 else:
 x = x-1

Assume r = 0
Coin = Heads
Hop Right
The value of x is increased from 2 to 3.

```python
x = 0
while abs(x) < 5:
    r = randi(0,1)
    if r == 0:
        x = x+1
    else:
        x = x-1
```
Understanding the While Loop

x = 0
while abs(x) < 5:
 r = randi(0,1)
 if r == 0:
 x = x+1
 else:
 x = x-1

abs(x) < 5 is true. Robot not at boundary. Loop continues
Understanding the While Loop

x = 0
while abs(x) < 5:
 r = randi(0,1)
 if r == 0:
 x = x+1
 else:
 x = x-1

Assume r = 1
Coin = Tails
Hop Left
x = 0
while abs(x) < 5:
 r = randi(0,1)
 if r == 0:
 x = x+1
 else:
 x = x-1
The value of x is decreased from 3 to 2.
Understanding the While Loop

```
x = 0
while abs(x) < 5:
    r = randi(0,1)
    if r == 0:
        x = x+1
    else:
        x = x-1
```

abs(x) < 5 is true.
Robot not at boundary.
Loop continues.
Understanding the While Loop

```
x = 0
while abs(x) < 5:
    r = randi(0,1)
    if r == 0:
        x = x+1
    else:
        x = x-1
```

Assume $r = 1$

Coin = Heads

Hop Right
x = 0
while abs(x) < 5:
 r = randi(0,1)
 if r == 0:
 x = x + 1
 else:
 x = x - 1

The value of x is increased from 2 to 3.
Understanding the While Loop

abs(x) < 5 is true.
Robot not at boundary.
Loop continues

x = 0
while abs(x) < 5:
 r = randi(0,1)
 if r == 0:
 x = x + 1
 else:
 x = x - 1
x = 0
while abs(x) < 5:
 r = randi(0,1)
 if r == 0:
 x = x+1
 else:
 x = x-1

Assume r = 0
Coin = Heads
Hop Right
x = 0
while abs(x) < 5:
 r = randi(0,1)
 if r == 0:
 x = x+1
 else:
 x = x-1

The value of x is increased from 3 to 4.
Understanding the While Loop

```
x = 0
while abs(x) < 5:
    r = randi(0,1)
    if r == 0:
        x = x+1
    else:
        x = x-1
```

abs(x) < 5 is true.
Robot not at boundary.
Loop continues
Understanding the While Loop

\[
x = 0
\]

while abs(x) < 5:
 \[
 r = \text{randi}(0,1)
 \]
 if r == 0:
 x = x+1
 else:
 x = x-1

Assume r = 0
Coin = Heads
Hop Right
Understanding the While Loop

x = 0
while abs(x) < 5:
 r = randi(0,1)
 if r == 0:
 x = x+1
 else:
 x = x-1

The value of \(x \) is increased from 4 to 5.
Understanding the While Loop

x = 0
while abs(x) < 5:
 r = randi(0,1)
 if r == 0:
 x = x+1
 else:
 x = x-1

abs(x) < 5 is False.
Robot is on the boundary.
Loop TERMINATES
Sample Output

<table>
<thead>
<tr>
<th>L</th>
<th>Ave</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>93</td>
</tr>
<tr>
<td>15</td>
<td>219</td>
</tr>
<tr>
<td>20</td>
<td>399</td>
</tr>
<tr>
<td>25</td>
<td>649</td>
</tr>
<tr>
<td>30</td>
<td>917</td>
</tr>
<tr>
<td>35</td>
<td>1259</td>
</tr>
<tr>
<td>40</td>
<td>1594</td>
</tr>
</tbody>
</table>

Averages based on 1000 trials.

Looks like doubling L increases the average by a factor of 4.

Insight through Computing!