18. Recursion

Recursive Partitioning
Random Mondrian
The Mechanics of Recursion Using n!
Back to MergeSort

What is Recursion?
A function is recursive if it calls itself.

A pattern is recursive if it is defined in terms of itself.

I can tell you what this is in terms of what that is.

Recursive Graphics
We will develop a graphics procedure that draws this:

The procedure will call itself.

Partitioning a Triangle

Given This:

Requires Repetition of This...

Draw This:

Given a yellow triangle
Define the inner triangle and the 3 corner triangles
Color the inner triangle and repeat the process on the 3 corner triangles
“Repeat the Process”

Visit every yellow triangle and replace it with

Gives Us This...

Etc.
To Pull This Off
We Will Need Some Triangle Drawing Tools

We Augment simpleGraphicsE -- Again

def DrawPoly(x,y,color=None,stroke=1):
 """ Draws a polygon whose vertices are specified by float lists x and y. """
 x = [-5, -1, 4, 0, -2]
y = [-3, -4, 0, 5, 4]
 DrawPoly(x,y,color=ORANGE)

Drawing a Polygon

Drawing the Inner Triangle

Computing Midpoints

The Notion of Level

Notice that a 3-level partition involves a display of the inner triangle and a 2-level partitioning of each corner triangle
PseudoCode

```python
def Partition(VertexInformation, Level):
    if Level == 0:
        Draw a yellow triangle
    else:
        Draw inner triangle magenta
        # Partition the 3 corner triangles
        # with the level reduced by one.
        Partition(VertexInformation, Level - 1)
        Partition(VertexInformation, Level - 1)
        Partition(VertexInformation, Level - 1)
```

def Partition(x, y, Level):

```python
if Level == 0:
    DrawPoly(x, y, color=YELLOW)
else:
    a = specify x-values of vertices
    b = specify y-values of vertices
    DrawPoly(a, b, color=MAGENTA)
    u0 = specify x-values of vertices
    v0 = specify y-values of vertices
    Partition(u0, v0, Level - 1)
    u1 = specify x-values of vertices
    v1 = specify y-values of vertices
    Partition(u1, v1, Level - 1)
    u2 = specify x-values of vertices
    v2 = specify y-values of vertices
    Partition(u2, v2, Level - 1)
```

It is Important!

Step One in simulating flow around an airfoil is to generate a mesh and (say) estimate velocity at each mesh point.

A Note on Chopping up a Region into Triangles...

Next Up: Random Mondrians

Using Python:
Random Mondrian

Given This:

\[
\begin{array}{c}
L \\
W
\end{array}
\]

Draw This:

The Subdivide Process Applies to a Rectangle

Subdivision Starts with a Random Dart Throw

This Defines 4 Smaller Rectangles

Notion of Level

A 1-level Partitioning

A 2-level Partitioning
def Mondrian(x, y, L, W, level):
 if level == 0:
 c = RandomColor()
 DrawRect(x, y, L, W, color=c)
 else:
 Mondrian(upper left rectangle info, level - 1)
 Mondrian(upper right rectangle info, level - 1)
 Mondrian(lower left rectangle info, level - 1)
 Mondrian(lower right rectangle info, level - 1)

We need some new technology to organize the selection random colors.

Lists with Entries that Are Lists

An Example:

cyan = [0.0, 1.0, 0.1.0]
magenta = [1.0, 0.0, 0.1.0]
yellow = [1.0, 1.0, 0.0]
myColors = [cyan, magenta, yellow]
print myColors[1][2]

Lists with Entries that Are Lists

from simpleGraphics import *
from random import randint as randi

def RandomColor():
 """Returns a randomly selected rgb list."""
 c = [RED, GREEN, BLUE, ORANGE, CYAN]
 i = randi(0, len(c) - 1)
 return c[i]

Next Up

A Non-Graphics Example of Recursion: The Factorial Function

Recursive Evaluation of Factorial

Recall the factorial function:

def F(n):
 x = 1
 for k in range(1, n + 1):
 x = x * k
 return x

5! = 1x2x3x4x5
Recursive Evaluation of Factorial

Q. How would you compute $6!$ given that you have computed $5! = 120$?

A. $6! = 120 \times 6$

```python
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a
```

Executing $F(3)$

```
m = 3
x = F(m)
print x
```

We are in the calling script

We encounter a function call. F is called with argument equal to 2.

```
m = 3
x = F(m)
print x
```

We open up a call frame.
Executing F(3)

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a
```

We encounter a function call. F is called with argument 1.

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a
```

The value is sent back to the caller.

That function call is over.

Control now passes to this "edition" of F.
Executing $F(3)$

$m = 3$
$x = F(m)$
print x

def $F(n)$:
 if $n<=1$:
 return 1
 else:
 $a = F(n-1)$
 return $n\times a$

The function call is over

The value 6 is "assigned" to return

Control now passes to this "edition" of F

The value is returned to the caller.
Executing F(3)

```python
m = 3
x = F(m)
print x
```

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a

m -> 3
x -> 6
```

This function call is over.

```
m = 3
x = F(m)
```

Back To Merge Sort

```
m -> 3
x -> 6
```

Output: 6

All Done!

Recursive Merge Sort

```python
def MergeSort(a):
    n = length(a)
    if n==1:
        return a
    else:
        m = n/2
        u0 = list(a[:m])
        u1 = list(a[m:])
        y0 = MergeSort(u0)
        y1 = MergeSort(u1)
        return Merge(y0,y1)
```

A Schematic

```
A Sorted List is produced at each "\:". Let's look at the order in which lists are sorted.
```

A function can call itself!
A Sorted List is produced at each "::" Let's look at the order in which lists are sorted.
A Sorted List is produced at each "::" Let's look at the order in which lists are sorted.
Some Conclusions

Recursion is sometimes the simplest way to organize a computation.

It would be next to impossible to do the triangle partition problem any other way.

On the other hand, factorial computation is easier via for-loop iteration.

Some Conclusions

The function calls required by a recursive solution can be a significant overhead.

Will we reach the “base case”?

Graphics examples: We will reach Level==0
Factorial: We will reach n==1
MergeSort: We will reach len(a) ==1